# color tracking with conic mirror - By: EmaMaker - wed 15 jan 2020 # Based on: # color tracking - By: paolix - ven mag 18 2018 # Automatic RGB565 Color Tracking Example # import sensor, image, time, pyb, math from pyb import UART uart = UART(3,19200, timeout_char = 1000) START_BYTE = chr(105) #'i' END_BYTE = chr(115) #'s' BYTE_UNKNOWN = chr(116) #'t' y_found = False b_found = False #From Arduino Documentation at: https://www.arduino.cc/reference/en/language/functions/math/map/ def val_map(x, in_min, in_max, out_min, out_max): x = int(x) in_min = int(in_min) in_max = int(in_max) out_min = int(out_min) out_max = int(out_max) return int((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min) # Check side def isInLeftSide(img, x): return x < img.height() / 2 def isInRightSide(img, x): return x >= img.height() / 2 # LED Setup ################################################################## red_led = pyb.LED(1) green_led = pyb.LED(2) blue_led = pyb.LED(3) red_led.off() green_led.off() blue_led.on() ############################################################################## thresholds = [ (72, 100, -26, 12, 37, 91), # thresholds yellow goalz (45, 70, -9, 29, -80, -42)] # thresholds blue goal (6, 31, -15, 4, -35, 0) roi = (40, 0, 260, 240) # Camera Setup ############################################################### '''sensor.reset()xxxx sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking sensor.set_auto_exposure(False, 10000) vbc #sensor.set_backlight(1) #sensor.set_brightness(+2 ) #sensor.set_windowing(roi) clock = time.clock()''' sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.set_windowing(roi) sensor.set_contrast(3) sensor.set_saturation(3) sensor.set_brightness(3) sensor.set_auto_whitebal(False, (-6.02073, -5.494869, -0.8559153)) sensor.set_auto_exposure(False, 5845) #sensor.set_auto_gain(True) sensor.skip_frames(time = 300) clock = time.clock() ############################################################################## while(True): clock.tick() #print("Exposure: " + str(sensor.get_exposure_us()) + " Gain: " + str(sensor.get_gain_db()) + " White Bal: " + str(sensor.get_rgb_gain_db())) blue_led.off() y_found = False b_found = False tt_yellow = [(0,999,0,1)] ## creo una lista di tuple per il giallo, valore x = 999 : non trovata tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata img = sensor.snapshot() for blob in img.find_blobs(thresholds, pixels_threshold=100, area_threshold=100, merge = True): img.draw_rectangle(blob.rect()) #img.draw_cross(blob.cx(), blob.cy()) if (blob.code() == 1): tt_yellow = tt_yellow + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] y_found = True if (blob.code() == 2): tt_blue = tt_blue + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] b_found = True tt_yellow.sort(key=lambda tup: tup[0]) ## ordino le liste tt_blue.sort(key=lambda tup: tup[0]) ## ordino le liste ny = len(tt_yellow) nb = len(tt_blue) #Formulas to compute position of points, considering that the H7 is rotated by a certain angle #x = y-offset #y = offset - x #Compute everything related to Yellow First y_area, y1_cx, y1_cy, y_code = tt_yellow[ny-1] y_cx = int(y1_cx - img.width() / 2) y_cy = int(img.height() / 2 - y1_cy) #Normalize data between 0 and 100 if y_found == True: img.draw_cross(y1_cx, y1_cy) y_cx = val_map(y_cx, -img.height() / 2, img.height() / 2, 100, 0) y_cy = val_map(y_cy, -img.width() / 2, img.width() / 2, 0, 100) #Prepare for send as a list of characters s_ycx = chr(y_cx) s_ycy = chr(y_cy) else: y_cx = BYTE_UNKNOWN y_cy = BYTE_UNKNOWN #Prepare for send as a list of characters s_ycx = y_cx s_ycy = y_cy #Compute everything relative to Blue '''Given the light situation in our lab and given that blue is usually harder to spot than yellow, we need to check it we got a blue blob that is in the same side of the ground as the yellow one, if so, discard it and check a new one ''' b_area, b1_cx, b1_cy, b_code = tt_blue[nb-1] b_cx = int(b1_cx - img.width() / 2) b_cy = int(img.height() / 2 - b1_cy) if b_found == True: img.draw_cross(b1_cx, b1_cy) b_cx = val_map(b_cx, -img.height() / 2, img.height() / 2, 100, 0) b_cy = val_map(b_cy, -img.width() / 2, img.width() / 2, 0, 100) #Prepare for send as a list of characters s_bcx = chr(b_cx) s_bcy = chr(b_cy) else: b_cx = BYTE_UNKNOWN b_cy = BYTE_UNKNOWN #Prepare for send as a list of characters s_bcx = b_cx s_bcy = b_cy ''' if b_found == True: for i in range(nb-1, 0,-1): b_area, b1_cx, b1_cy, b_code = tt_blue[i] if (not y_found) or ((isInRightSide(img, b1_cx) and isInLeftSide(img, y1_cx)) or (isInRightSide(img, y1_cx) and isInLeftSide(img, b1_cx))): img.draw_cross(b1_cx, b1_cy) b_cx = int(b1_cy - img.height() / 2) b_cy = int(img.width() / 2 - b1_cx) #print("before :" + str(b_cx) + " " + str(b_cy)) b_cx = val_map(b_cx, -img.height() / 2, img.height() / 2, 100, 0) b_cy = val_map(b_cy, -img.width() / 2, img.width() / 2, 0, 100) #print("after :" + str(b_cx) + " " + str(b_cy)) #Prepare for send as a list of characters s_bcx = chr(b_cx) s_bcy = chr(b_cy) else: b_cx = BYTE_UNKNOWN b_cy = BYTE_UNKNOWN #Prepare for send as a list of characters s_bcx = b_cx s_bcy = b_cy ''' #print(str(y_cx) + " | " + str(y_cy) + " --- " + str(b_cx) + " | " + str(b_cy)) uart.write(START_BYTE) uart.write(s_bcx) uart.write(s_bcy) uart.write(s_ycx) uart.write(s_ycy) uart.write(END_BYTE)