/* Inertial Measurement Unit Maths Library Copyright (C) 2013-2014 Samuel Cowen www.camelsoftware.com Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef IMUMATH_QUATERNION_HPP #define IMUMATH_QUATERNION_HPP #include #include #include #include #include "matrix.h" namespace imu { class Quaternion { public: Quaternion(): _w(1.0), _x(0.0), _y(0.0), _z(0.0) {} Quaternion(double w, double x, double y, double z): _w(w), _x(x), _y(y), _z(z) {} Quaternion(double w, Vector<3> vec): _w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {} double& w() { return _w; } double& x() { return _x; } double& y() { return _y; } double& z() { return _z; } double w() const { return _w; } double x() const { return _x; } double y() const { return _y; } double z() const { return _z; } double magnitude() const { return sqrt(_w*_w + _x*_x + _y*_y + _z*_z); } void normalize() { double mag = magnitude(); *this = this->scale(1/mag); } Quaternion conjugate() const { return Quaternion(_w, -_x, -_y, -_z); } void fromAxisAngle(const Vector<3>& axis, double theta) { _w = cos(theta/2); //only need to calculate sine of half theta once double sht = sin(theta/2); _x = axis.x() * sht; _y = axis.y() * sht; _z = axis.z() * sht; } void fromMatrix(const Matrix<3>& m) { double tr = m.trace(); double S; if (tr > 0) { S = sqrt(tr+1.0) * 2; _w = 0.25 * S; _x = (m(2, 1) - m(1, 2)) / S; _y = (m(0, 2) - m(2, 0)) / S; _z = (m(1, 0) - m(0, 1)) / S; } else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2)) { S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; _w = (m(2, 1) - m(1, 2)) / S; _x = 0.25 * S; _y = (m(0, 1) + m(1, 0)) / S; _z = (m(0, 2) + m(2, 0)) / S; } else if (m(1, 1) > m(2, 2)) { S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; _w = (m(0, 2) - m(2, 0)) / S; _x = (m(0, 1) + m(1, 0)) / S; _y = 0.25 * S; _z = (m(1, 2) + m(2, 1)) / S; } else { S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; _w = (m(1, 0) - m(0, 1)) / S; _x = (m(0, 2) + m(2, 0)) / S; _y = (m(1, 2) + m(2, 1)) / S; _z = 0.25 * S; } } void toAxisAngle(Vector<3>& axis, double& angle) const { double sqw = sqrt(1-_w*_w); if (sqw == 0) //it's a singularity and divide by zero, avoid return; angle = 2 * acos(_w); axis.x() = _x / sqw; axis.y() = _y / sqw; axis.z() = _z / sqw; } Matrix<3> toMatrix() const { Matrix<3> ret; ret.cell(0, 0) = 1 - 2*_y*_y - 2*_z*_z; ret.cell(0, 1) = 2*_x*_y - 2*_w*_z; ret.cell(0, 2) = 2*_x*_z + 2*_w*_y; ret.cell(1, 0) = 2*_x*_y + 2*_w*_z; ret.cell(1, 1) = 1 - 2*_x*_x - 2*_z*_z; ret.cell(1, 2) = 2*_y*_z - 2*_w*_x; ret.cell(2, 0) = 2*_x*_z - 2*_w*_y; ret.cell(2, 1) = 2*_y*_z + 2*_w*_x; ret.cell(2, 2) = 1 - 2*_x*_x - 2*_y*_y; return ret; } // Returns euler angles that represent the quaternion. Angles are // returned in rotation order and right-handed about the specified // axes: // // v[0] is applied 1st about z (ie, roll) // v[1] is applied 2nd about y (ie, pitch) // v[2] is applied 3rd about x (ie, yaw) // // Note that this means result.x() is not a rotation about x; // similarly for result.z(). // Vector<3> toEuler() const { Vector<3> ret; double sqw = _w*_w; double sqx = _x*_x; double sqy = _y*_y; double sqz = _z*_z; ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw)); ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw)); ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw)); return ret; } Vector<3> toAngularVelocity(double dt) const { Vector<3> ret; Quaternion one(1.0, 0.0, 0.0, 0.0); Quaternion delta = one - *this; Quaternion r = (delta/dt); r = r * 2; r = r * one; ret.x() = r.x(); ret.y() = r.y(); ret.z() = r.z(); return ret; } Vector<3> rotateVector(const Vector<2>& v) const { return rotateVector(Vector<3>(v.x(), v.y())); } Vector<3> rotateVector(const Vector<3>& v) const { Vector<3> qv(_x, _y, _z); Vector<3> t = qv.cross(v) * 2.0; return v + t*_w + qv.cross(t); } Quaternion operator*(const Quaternion& q) const { return Quaternion( _w*q._w - _x*q._x - _y*q._y - _z*q._z, _w*q._x + _x*q._w + _y*q._z - _z*q._y, _w*q._y - _x*q._z + _y*q._w + _z*q._x, _w*q._z + _x*q._y - _y*q._x + _z*q._w ); } Quaternion operator+(const Quaternion& q) const { return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z); } Quaternion operator-(const Quaternion& q) const { return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z); } Quaternion operator/(double scalar) const { return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar); } Quaternion operator*(double scalar) const { return scale(scalar); } Quaternion scale(double scalar) const { return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar); } private: double _w, _x, _y, _z; }; } // namespace #endif