# goal dist tracking with conic mirror - By: EmaMaker - fri 21 feb 2020 # Based on: # color tracking - By: paolix - ven mag 18 2018 # Automatic RGB565 Color Tracking Example # import sensor, image, time, pyb, math from pyb import UART uart = UART(3,19200, timeout_char = 1000) def torad(f): return (f*math.pi/180) % math.pi #These measures are in centimeters FIELD_W = 131 FIELD_H = 193 GOALS_DEPTH = 207 #Attack 1 means attacking yellow, attack 0 means attacking blue ATTACKING = 0 # LED Setup ################################################################## red_led = pyb.LED(1) green_led = pyb.LED(2) blue_led = pyb.LED(3) red_led.off() green_led.off() blue_led.on() ############################################################################## #thresholds = [ (30, 100, 15, 127, 15, 127), # generic_red_thresholds # (30, 100, -64, -8, -32, 32), # generic_green_thresholds # (0, 15, 0, 40, -80, -20)] # generic_blue_thresholds #thresholds = [ (54, 93, -10, 25, 55, 70), # thresholds yellow goal # (30, 45, 1, 40, -60, -19)] # thresholds blue goal # thresholds = [ (40, 100, -3, 35, 16, 96) , # thresholds yellow goal (39, 59, -13, 12, -43, -19)] # thresholds blue goal (6, 31, -15, 4, -35, 0) roi = (0, 6, 318, 152) # Camera Setup ############################################################### '''sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking sensor.set_auto_exposure(False, 10000) #sensor.set_backlight(1) #sensor.set_brightness(+2) #sensor.set_windowing(roi) clock = time.clock()''' sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QQVGA) sensor.set_contrast(+2) sensor.set_saturation(2) sensor.set_brightness(-3) sensor.set_quality(0) sensor.set_auto_exposure(False, 6000) sensor.set_auto_gain(True) sensor.skip_frames(time = 300) clock = time.clock() ############################################################################## # [] list # () tupla '''while(True): clock.tick() img = sensor.snapshot()''' while(True): clock.tick() blue_led.off() tt_yellow = [(0,999,0,1)] ## creo una lista di tuple per il giallo, valore x = 999 : non trovata tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata img = sensor.snapshot() for blob in img.find_blobs(thresholds, pixels_threshold=45, area_threshold=80, merge = True): img.draw_rectangle(blob.rect()) img.draw_cross(blob.cx(), blob.cy()) if (blob.code() == 1): tt_yellow = tt_yellow + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] if (blob.code() == 2): tt_blue = tt_blue + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] tt_yellow.sort(key=lambda tup: tup[0]) ## ordino le liste tt_blue.sort(key=lambda tup: tup[0]) ## ordino le liste ny = len(tt_yellow) nb = len(tt_blue) '''Yellow''' area,cx,cy,code = tt_yellow[ny-1] cx = img.width() / 2 - cx cy = img.height() / 2 - cy yAngle = math.pi/2 - math.atan2(cy, cx) yDist = math.sqrt(cx*cx + cy*cy) string_yellow = "Y"+str(cx)+" | "+str(cy)+" | "+str(yAngle)+" | "+str(yDist)+str(area)+"y" #print (string_yellow) # test on serial terminal '''Blue''' area,cx,cy,code = tt_blue[nb-1] cx = img.width() / 2 - cx cy = img.height() / 2 - cy bAngle = math.pi/2 - math.atan2(cy, cx) bDist = math.sqrt(cx*cx + cy*cy) string_blue = "B"+str(cx)+" | "+str(cy)+" | |"+str(bAngle)+" | "+str(bDist)+str(area)+"b" #print (string_blue) # test on serial terminal #Now calculate distance and position #Goal 1 is the one in front of the robot #Goal 2 is the one facing the back of the robot #convert in [0, 360), to be sure bAngle = int(bAngle * 180 / math.pi) yAngle = int(yAngle * 180 / math.pi) bAngle = (bAngle + 360) % 360; yAngle = (yAngle + 360) % 360; #Now bring it back to [-179, 180] if bAngle > 180: bAngle = bAngle - 360 if yAngle > 180: yAngle = yAngle - 360 if ATTACKING == 1: angle1 = abs(yAngle) angle2 = abs(bAngle - 180) else: angle1 = abs(bAngle) angle2 = abs(yAngle - 180) dist1 = (GOALS_DEPTH * math.sin(angle2) ) / (math.sin(angle1+angle2)) dist2 = (GOALS_DEPTH * math.sin(angle1) ) / (math.sin(angle1+angle2)) print("------") print(angle1) print(angle2) print(dist1) print(dist2) print("------") #print ("..................................") print(clock.fps())