diff --git a/utility/OpenMV/conic_eff.py b/utility/OpenMV/conic_eff.py new file mode 100644 index 0000000..1a5a593 --- /dev/null +++ b/utility/OpenMV/conic_eff.py @@ -0,0 +1,148 @@ +# color tracking with conic mirror - By: EmaMaker - wed 15 jan 2020 +# Based on: +# color tracking - By: paolix - ven mag 18 2018 + +# Automatic RGB565 Color Tracking Example +# + +import sensor, image, time, pyb, math + +from pyb import UART +uart = UART(3,19200, timeout_char = 1000) + +START_BYTE = chr(105) #'i' +END_BYTE = chr(115) #'s' +BYTE_UNKNOWN = chr(116) #'t' + +y_found = False +b_found = False + +#From Arduino Documentation at: https://www.arduino.cc/reference/en/language/functions/math/map/ +def val_map(x, in_min, in_max, out_min, out_max): + x = int(x) + in_min = int(in_min) + in_max = int(in_max) + out_min = int(out_min) + out_max = int(out_max) + return int((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min) + + +# LED Setup ################################################################## +red_led = pyb.LED(1) +green_led = pyb.LED(2) +blue_led = pyb.LED(3) + +red_led.off() +green_led.off() +blue_led.on() +############################################################################## + + + +thresholds = [ (69, 100, -12, 11, 15, 89), # thresholds yellow goal + (20, 51, -23, 26, -69, -31)] # thresholds blue goal (6, 31, -15, 4, -35, 0) + +roi = (0, 6, 318, 152) + +# Camera Setup ############################################################### +'''sensor.reset() +sensor.set_pixformat(sensor.RGB565) +sensor.set_framesize(sensor.QVGA) +sensor.skip_frames(time = 2000) +sensor.set_auto_gain(False) # must be turned off for color tracking +sensor.set_auto_whitebal(False) # must be turned off for color tracking +sensor.set_auto_exposure(False, 10000) +#sensor.set_backlight(1) +#sensor.set_brightness(+2) +#sensor.set_windowing(roi) +clock = time.clock()''' + +sensor.reset() +sensor.set_pixformat(sensor.RGB565) +sensor.set_framesize(sensor.QQVGA) +sensor.set_contrast(+0) +sensor.set_saturation(+0) +sensor.set_brightness(0) +sensor.set_quality(0) +sensor.set_auto_exposure(False, 8000) +sensor.set_auto_gain(True) +sensor.skip_frames(time = 300) + +clock = time.clock() +############################################################################## + + +while(True): + clock.tick() + + blue_led.off() + + y_found = False + b_found = False + + tt_yellow = [(0,999,0,1)] ## creo una lista di tuple per il giallo, valore x = 999 : non trovata + tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata + + img = sensor.snapshot() + for blob in img.find_blobs(thresholds, pixels_threshold=75, area_threshold=115, merge = True): + img.draw_rectangle(blob.rect()) + img.draw_cross(blob.cx(), blob.cy()) + + if (blob.code() == 1): + tt_yellow = tt_yellow + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] + y_found = True + if (blob.code() == 2): + tt_blue = tt_blue + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] + b_found = True + + tt_yellow.sort(key=lambda tup: tup[0]) ## ordino le liste + tt_blue.sort(key=lambda tup: tup[0]) ## ordino le liste + + ny = len(tt_yellow) + nb = len(tt_blue) + + y_area, y1_cx, y1_cy, y_code = tt_yellow[ny-1] + b_area, b1_cx, b1_cy, b_code = tt_blue[nb-1] + + y_cx = int(img.width() / 2 - y1_cx) + y_cy = int(img.height() / 2 - y1_cy) + b_cx = int(img.width() / 2 - b1_cx) + b_cy = int(img.height() / 2 - b1_cy) + + #Normalize data between 0 and 100 + if y_found == True: + y_cx = val_map(y_cx, -img.width() / 2, img.width() / 2, 0, 100) + y_cy = val_map(y_cy, -img.height() / 2, img.height() / 2, 0, 100) + #Prepare for send as a list of characters + s_ycx = chr(y_cx) + s_ycy = chr(y_cy) + else: + y_cx = BYTE_UNKNOWN + y_cy = BYTE_UNKNOWN + #Prepare for send as a list of characters + s_ycx = y_cx + s_ycy = y_cy + + if b_found == True: + b_cx = val_map(b_cx, -img.width() / 2, img.width() / 2, 0, 100) + b_cx = val_map(b_cy, -img.height() / 2, img.height() / 2, 0, 100) + + #Prepare for send as a list of characters + s_bcx = chr(b_cx) + s_bcy = chr(b_cy) + else: + b_cx = BYTE_UNKNOWN + b_cy = BYTE_UNKNOWN + #Prepare for send as a list of characters + s_bcx = b_cx + s_bcy = b_cy + + #print(str(y_cx) + " | " + str(y_cy) + " --- " + str(b_cx) + " | " + str(b_cy)) + + uart.write(START_BYTE) + uart.write(s_ycx) + uart.write(s_ycy) + uart.write(s_bcx) + uart.write(s_bcy) + uart.write(END_BYTE) + diff --git a/utility/OpenMV/main_test_conic.py b/utility/OpenMV/main_test_conic.py index 366b20d..31bce7c 100644 --- a/utility/OpenMV/main_test_conic.py +++ b/utility/OpenMV/main_test_conic.py @@ -30,7 +30,7 @@ blue_led.on() # (30, 45, 1, 40, -60, -19)] # thresholds blue goal # thresholds = [ (55, 98, -14, 12, 7, 55), # thresholds yellow goal - (26, 65, -11, 47, -95, -36)] # thresholds blue goal (6, 31, -15, 4, -35, 0) + (20, 51, -23, 26, -69, -31)] # thresholds blue goal (6, 31, -15, 4, -35, 0) roi = (0, 6, 318, 152) @@ -49,7 +49,7 @@ clock = time.clock()''' sensor.reset() sensor.set_pixformat(sensor.RGB565) -sensor.set_framesize(sensor.QVGA) +sensor.set_framesize(sensor.QQVGA) sensor.set_contrast(+0) sensor.set_saturation(+0) sensor.set_brightness(0) @@ -79,13 +79,7 @@ while(True): tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata img = sensor.snapshot() - for blob in img.find_blobs(thresholds, pixels_threshold=500, area_threshold=700 - - - - - -, merge = True): + for blob in img.find_blobs(thresholds, pixels_threshold=75, area_threshold=100, merge = True): img.draw_rectangle(blob.rect()) img.draw_cross(blob.cx(), blob.cy())