# color tracking with conic mirror - By: EmaMaker - wed 15 jan 2020 # Based on: # color tracking - By: paolix - ven mag 18 2018 # Automatic RGB565 Color Tracking Example # import sensor, image, time, pyb, math from pyb import UART uart = UART(3,19200, timeout_char = 1000) START_BYTE = chr(105) #'i' END_BYTE = chr(115) #'s' BYTE_UNKNOWN = chr(116) #'t' y_found = False b_found = False #From Arduino Documentation at: https://www.arduino.cc/reference/en/language/functions/math/map/ def val_map(x, in_min, in_max, out_min, out_max): x = int(x) in_min = int(in_min) in_max = int(in_max) out_min = int(out_min) out_max = int(out_max) return int((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min) # LED Setup ################################################################## red_led = pyb.LED(1) green_led = pyb.LED(2) blue_led = pyb.LED(3) red_led.off() green_led.off() blue_led.on() ############################################################################## thresholds = [ (30, 70, -12, 19, 10, 57), # thresholds yellow goal (0, 31, -2, 39, -68, -25)] # thresholds blue goal (6, 31, -15, 4, -35, 0) roi = (0, 6, 318, 152) # Camera Setup ############################################################### '''sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking sensor.set_auto_exposure(False, 10000) #sensor.set_backlight(1) #sensor.set_brightness(+2) #sensor.set_windowing(roi) clock = time.clock()''' sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QQVGA) sensor.set_contrast(+3) sensor.set_saturation(0) sensor.set_brightness(-3) sensor.set_quality(0) sensor.set_auto_exposure(False, 6000) sensor.set_auto_gain(True) sensor.skip_frames(time = 300) clock = time.clock() ############################################################################## while(True): clock.tick() blue_led.off() y_found = False b_found = False tt_yellow = [(0,999,0,1)] ## creo una lista di tuple per il giallo, valore x = 999 : non trovata tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata img = sensor.snapshot() for blob in img.find_blobs(thresholds, pixels_threshold=75, area_threshold=130, merge = True): img.draw_rectangle(blob.rect()) img.draw_cross(blob.cx(), blob.cy()) if (blob.code() == 1): tt_yellow = tt_yellow + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] y_found = True if (blob.code() == 2): tt_blue = tt_blue + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ] b_found = True tt_yellow.sort(key=lambda tup: tup[0]) ## ordino le liste tt_blue.sort(key=lambda tup: tup[0]) ## ordino le liste ny = len(tt_yellow) nb = len(tt_blue) y_area, y1_cx, y1_cy, y_code = tt_yellow[ny-1] b_area, b1_cx, b1_cy, b_code = tt_blue[nb-1] y_cx = int(img.width() / 2 - y1_cx) y_cy = int(img.height() / 2 - y1_cy) b_cx = int(img.width() / 2 - b1_cx) b_cy = int(img.height() / 2 - b1_cy) #Normalize data between 0 and 100 if y_found == True: y_cx = val_map(y_cx, -img.width() / 2, img.width() / 2, 100, 0) y_cy = val_map(y_cy, -img.height() / 2, img.height() / 2, 0, 100) #Prepare for send as a list of characters s_ycx = chr(y_cx) s_ycy = chr(y_cy) else: y_cx = BYTE_UNKNOWN y_cy = BYTE_UNKNOWN #Prepare for send as a list of characters s_ycx = y_cx s_ycy = y_cy if b_found == True: b_cx = val_map(b_cx, -img.width() / 2, img.width() / 2, 100, 0) b_cy = val_map(b_cy, -img.height() / 2, img.height() / 2, 0, 100) #Prepare for send as a list of characters s_bcx = chr(b_cx) s_bcy = chr(b_cy) else: b_cx = BYTE_UNKNOWN b_cy = BYTE_UNKNOWN #Prepare for send as a list of characters s_bcx = b_cx s_bcy = b_cy print(str(y_cx) + " | " + str(y_cy) + " --- " + str(b_cx) + " | " + str(b_cy)) uart.write(START_BYTE) uart.write(s_bcx) uart.write(s_bcy) uart.write(s_ycx) uart.write(s_ycy) uart.write(END_BYTE)