function [u, ut, uc, U_corr_history, q_pred] = control_act(t, q, sim_data) dc = decouple_matrix(q, sim_data); ut = utrack(t, q, sim_data); [uc, U_corr_history, q_pred] = ucorr(t, q, sim_data); ut = dc*ut; %uc = dc*uc; %uc = zeros(2,1); u = ut+uc; % saturation u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u)); end function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data) pred_hor = sim_data.PREDICTION_HORIZON; SATURATION = sim_data.SATURATION; PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE; tc = sim_data.tc; u_corr = zeros(2,1); U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON); q_act = q; u_track_pred=zeros(2,1, pred_hor); T_inv_pred=zeros(2,2, pred_hor); q_pred = []; s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE; if eq(pred_hor, 0) return elseif eq(pred_hor, 1) if eq(sim_data.costfun, 1) % minimize vcorr_r^2 + wcorr_l^2 H = eye(2); elseif eq(sim_data.costfun, 2) % ex1: minimize v=r(wr+wl)/2 H = sim_data.r*sim_data.r*0.5*ones(2,2); elseif eq(sim_data.costfun, 3) % ex2: minimize w=r(wr-wl)/d H = sim_data.r*sim_data.r*2*[1, -1; -1, 1]/(sim_data.d*sim_data.d); elseif eq(sim_data.costfun, 4) rr = sim_data.r*sim_data.r; dd = sim_data.d*sim_data.d; bb = sim_data.b*sim_data.b; H1 = rr*ones(2)/4; H2 = bb*rr*[1 -1; -1 1]/dd; H = 2 * (H1 + H2); end f = zeros(2,1); T_inv = decouple_matrix(q_act, sim_data); ut = utrack(t, q_act, sim_data); d = T_inv*ut; % solve qp problem options = optimoptions('quadprog', 'Algorithm','active-set','Display','off'); u_corr = quadprog(H, f, [], [], [],[], -s_ - d, s_-d, zeros(2,1), options); q_pred = q_act; U_corr_history(:,:,1) = u_corr; return else %if pred_hor > 1 % move the horizon over 1 step and add trailing zeroes U_corr_history = cat(3, sim_data.U_corr_history(:,:, 2:end), zeros(2,1)); %end %disp('start of simulation') % for each step in the prediction horizon, integrate the system to % predict its future state for k = 1:pred_hor % start from the old (known) state % compute the inputs, based on the old state % u_corr is the prediction done at some time in the past, as found in U_corr_history u_corr_ = U_corr_history(:, :, k); % u_track can be computed from q t_ = t + tc * (k-1); u_track_ = utrack(t_, q_act, sim_data); T_inv = decouple_matrix(q_act, sim_data); % compute inputs (v, w)/(wr, wl) u_ = T_inv * u_track_ + u_corr_; % if needed, map (wr, wl) to (v, w) for unicicle if eq(sim_data.robot, 1) u_ = diffdrive_to_uni(u_, sim_data); end % integrate unicycle theta_new = q_act(3) + tc*u_(2); % compute the state integrating with euler %x_new = q_act(1) + tc*u_(1) * cos(q_act(3)); %y_new = q_act(2) + tc*u_(1) * sin(q_act(3)); % compute the state integrating via runge-kutta x_new = q_act(1) + tc*u_(1) * cos(q_act(3) + 0.5*tc*u_(2)); y_new = q_act(2) + tc*u_(1) * sin(q_act(3) + 0.5*tc*u_(2)); q_new = [x_new; y_new; theta_new]; % save history q_pred = [q_pred; q_new']; u_track_pred(:,:,k) = u_track_; T_inv_pred(:,:,k) = T_inv; % Prepare old state for next iteration q_act = q_new; end %{ Now setup the qp problem It needs: - Unknowns, u_corr at each timestep. Will be encoded as a vector of vectors, in which every two elements is a u_j i.e. (u_1; u_2; u_3; ...; u_C) = (v_1; w_1; v_2, w_2; v_3, w_3; ... ; v_C, w_C) It is essential that the vector stays a column, so that u'u is the sum of the squared norms of each u_j - Box constraints: a constraint for each timestep in the horizon. Calculated using the predicted state and inputs. They need to be put in matrix (Ax <= b) form %} % box constraints lb = []; ub = []; for k=1:pred_hor T_inv = T_inv_pred(:,:,k); u_track = u_track_pred(:,:,k); d = T_inv*u_track; lb = [lb; -s_-d]; ub = [ub; s_-d]; end if eq(sim_data.costfun, 1) % minimize vcorr_r^2 + wcorr_l^2 % squared norm of u_corr. H must be identity, H = eye(pred_hor*2)*2; elseif eq(sim_data.costfun, 2) % ex1: minimize v=r(wr+wl)/2 H = kron(eye(pred_hor), sim_data.r*sim_data.r*0.5*ones(2,2)); elseif eq(sim_data.costfun, 3) % ex2: minimize w=r(wr-wl)/d H = kron(eye(pred_hor), sim_data.r*sim_data.r*2*[1, -1; -1, 1]/(sim_data.d*sim_data.d)); end % no linear terms f = zeros(pred_hor*2, 1); % solve qp problem options = optimoptions('quadprog', 'Algorithm','active-set','Display','off'); U_corr = quadprog(H, f, [], [], [],[], lb, ub, zeros(2*pred_hor,1), options); % reshape the vector of vectors to be an array, each element being % u_corr_j as a 2x1 vector % and add the prediction at t_k+C U_corr_history = reshape(U_corr, [2,1,pred_hor]); % first result is what to do now u_corr=U_corr_history(:,:, 1); end end function u_track = utrack(t, q, sim_data) ref_s = double(subs(sim_data.ref, t)); dref_s = double(subs(sim_data.dref, t)); f = feedback(q, sim_data.b); err = ref_s - f; u_track = dref_s + sim_data.K*err; end function q_track = feedback(q, b) q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ]; end function T_inv = decouple_matrix(q, sim_data) theta = q(3); st = sin(theta); ct = cos(theta); b = sim_data.b; if eq(sim_data.robot, 0) T_inv = [ct, st; -st/b, ct/b]; elseif eq(sim_data.robot, 1) r = sim_data.r; d = sim_data.d; T_inv = [2*b*ct - d*st, d*ct + 2*b*st ; 2*b*ct + d*st, -d*ct+2*b*st] / (2*b*r); end end