function [u, ut, uc, U_corr_history] = control_act(t, q, sim_data) dc = decouple_matrix(q, sim_data.b); ut = utrack(t, q, sim_data); [uc, U_corr_history] = ucorr(t, q, sim_data); ut = dc*ut; uc = dc*uc; u = ut+uc; % saturation u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u)); end function [u_corr, U_corr_history] = ucorr(t, q, sim_data) pred_hor = sim_data.PREDICTION_HORIZON; SATURATION = sim_data.SATURATION; PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE; tc = sim_data.tc; u_corr = zeros(2,1); U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON); if eq(pred_hor, 0) return end if pred_hor > 1 % move the horizon over 1 step and add trailing zeroes U_corr_history = cat(3, sim_data.U_corr_history(:,:, 2:end), zeros(2,1)); end %disp('start of simulation') q_act = q; q_pred=zeros(3,1, pred_hor); u_track_pred=zeros(2,1, pred_hor); T_inv_pred=zeros(2,2, pred_hor); % for each step in the prediction horizon, integrate the system to % predict its future state for k = 1:pred_hor % start from the old (known) state % compute the inputs, based on the old state % u_corr is the prediction done at some time in the past, as found in U_corr_history u_corr_ = U_corr_history(:, :, k); % u_track can be computed from q t_ = t + tc * (k-1); u_track_ = utrack(t_, q_act, sim_data); T_inv = decouple_matrix(q_act, sim_data.b); u_ = T_inv * (u_corr_ + u_track_); theta_new = q_act(3) + tc*u_(2); % compute the state integrating with euler %x_new = q_act(1) + tc*u_(1) * cos(q_act(3)); %y_new = q_act(2) + tc*u_(1) * sin(q_act(3)); % compute the state integrating via runge-kutta x_new = q_act(1) + tc*u_(1) * cos(q_act(3) + 0.5*tc*u_(2)); y_new = q_act(2) + tc*u_(1) * sin(q_act(3) + 0.5*tc*u_(2)); q_new = [x_new; y_new; theta_new]; % save history %q_pred(:,:,k) = q_new; u_track_pred(:,:,k) = u_track_; T_inv_pred(:,:,k) = T_inv; % Prepare old state for next iteration q_act = q_new; end %{ Now setup the qp problem It needs: - Unknowns, u_corr at each timestep. Will be encoded as a vector of vectors, in which every two elements is a u_j i.e. (u_1; u_2; u_3; ...; u_C) = (v_1; w_1; v_2, w_2; v_3, w_3; ... ; v_C, w_C) It is essential that the vector stays a column, so that u'u is the sum of the squared norms of each u_j - Box constraints: a constraint for each timestep in the horizon. Calculated using the predicted state and inputs. They need to be put in matrix (Ax <= b) form %} % box constrains % A becomes sort of block-diagonal % A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2: % accounting for T_inv and -T_inv) by PREDICTION_HORIZON (number of % vectors in u_corr times the number of elements [2] in each vector) A_max_elems = pred_hor * 2 * 2; A_deq = []; b_deq = []; s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE; for k=1:pred_hor T_inv = T_inv_pred(:,:,k); u_track = u_track_pred(:,:,k); % [T_inv; -T_inv] is a 4x2 matrix n_zeros_before = (k-1) * 4; n_zeros_after = A_max_elems - n_zeros_before - 4; zeros_before = zeros(n_zeros_before, 2); zeros_after = zeros(n_zeros_after, 2); column = [zeros_before; T_inv; -T_inv; zeros_after]; A_deq = [A_deq, column]; d = T_inv*u_track; b_deq = [b_deq; s_ - d; s_ + d]; end %A_deq %b_deq % unknowns % squared norm of u_corr. H must be identity, % PREDICTION_HORIZON*size(u_corr) H = eye(pred_hor*2)*2; % no linear terms f = zeros(pred_hor*2, 1); % solve qp problem options = optimoptions('quadprog', 'Display', 'off'); U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options); % reshape the vector of vectors to be an array, each element being % u_corr_j as a 2x1 vector % and add the prediction at t_k+C U_corr_history = reshape(U_corr, [2,1,pred_hor]); %sim_data.U_corr_history = U_corr_history; % first result is what to do now u_corr=U_corr_history(:,:, 1); end function u_track = utrack(t, q, sim_data) ref_s = double(subs(sim_data.ref, t)); dref_s = double(subs(sim_data.dref, t)); f = feedback(q, sim_data.b); err = ref_s - f; u_track = dref_s + sim_data.K*err; end function q_track = feedback(q, b) q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ]; end function T_inv = decouple_matrix(q, b) theta = q(3); st = sin(theta); ct = cos(theta); T_inv = [ct, st; -st/b, ct/b]; end