clc clear all close all % options ROBOT = 'unicycle' %TESTS = ["straightline/chill", "straightline/chill_errortheta_pisixths", "straightline/toofast", "straightline/chill_errory", "circle/start_center", "figure8/chill", "figure8/toofast", "square"] TESTS = ["circle/start_center"] % main s_ = size(TESTS); for i = 1:length(TESTS) clearvars -except i s_ TESTS ROBOT close all % load simulation parameters common to all robots and all tests sim_data = load(["tests/robot_common.mat"]); TEST = convertStringsToChars(TESTS(i)) % load test data (trajectory, etc) test_data = load(['tests/' TEST '/common.mat']); for fn = fieldnames(test_data)' sim_data.(fn{1}) = test_data.(fn{1}); end % set trajectory and starting conditions sim_data.q0 = set_initial_conditions(sim_data.INITIAL_CONDITIONS); [ref dref] = set_trajectory(sim_data.TRAJECTORY, sim_data); sim_data.ref = ref; sim_data.dref = dref; %sim_data.tfin = 15; % spawn a new worker for each controller % 1: track only % 2: track + 1step % 3: track + multistep spmd (2) worker_index = spmdIndex; % load controller-specific options data = load(['tests/' num2str(worker_index) '.mat']); for fn = fieldnames(data)' sim_data.(fn{1}) = data.(fn{1}); end % load robot-specific options % put here to overwrite any parameter value left over in the tests % .mat files, just in case data = load(['tests/' ROBOT '.mat']); for fn = fieldnames(data)' sim_data.(fn{1}) = data.(fn{1}); end % initialize prediction horizon sim_data.U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON); sim_data % simulate robot tic; [t, q, y, ref_t, U, U_track, U_corr, U_corr_pred_history, Q_pred] = simulate_discr(sim_data); toc; disp('Done') end % save simulation data f1 = [ TEST '/' char(datetime, 'dd-MM-yyyy-HH-mm-ss')]; % windows compatible name f = ['results-' ROBOT '-costfun/' f1]; mkdir(f) % save workspace dsave([f '/workspace_composite.mat']); % save test file copyfile(['tests/' TEST], f); % save figures + plot results h = []; % plot results s1_ = size(worker_index); for n = 1:s1_(2) h = [h, figure('Name', [TEST ' ' num2str(n)] )]; plot_results(t{n}, q{n}, ref_t{n}, U{n}, U_track{n}, U_corr{n}); end % plot correction different between 1-step and multistep h = [h, figure('Name', 'difference between 1step and multistep')]; subplot(2,1,1) plot(t{2}, U_corr{2}(:, 1) - U_corr{3}(:, 1)) xlabel('t') ylabel(['difference on ' sim_data{1}.input1_name ' between 1-step and multistep']) subplot(2,1,2) plot(t{2}, U_corr{2}(:, 2) - U_corr{3}(:, 2)) xlabel('t') ylabel(['difference on ' sim_data{1}.input2_name ' between 1-step and multistep']) % save figures savefig(h, [f '/figure.fig']); %video(q{1}', ref_t{1}', 0.1, t{1}, 2, sim_data{1}.tc*0.05, "aa"); %video(q{2}', ref_t{2}', 0.1, t{2}, 2, sim_data{1}.tc*0.05, "aa"); %video(q{3}', ref_t{3}', 0.1, t{3}, 2, sim_data{1}.tc*0.05, "aa"); end %% FUNCTION DECLARATIONS % Discrete-time simulation function [t, q, y, ref_t, U, U_track, U_corr, U_corr_pred_history, Q_pred] = simulate_discr(sim_data) tc = sim_data.tc; steps = sim_data.tfin/tc q = sim_data.q0'; t = 0; Q_pred = zeros(sim_data.PREDICTION_HORIZON,3,sim_data.tfin/sim_data.tc + 1); U_corr_pred_history=zeros(sim_data.PREDICTION_HORIZON,2,steps); [u_discr, u_track, u_corr, U_corr_history, q_pred] = control_act(t, q, sim_data); sim_data.U_corr_history = U_corr_history; U = u_discr'; U_corr = u_corr'; U_track = u_track'; Q_pred(:, :, 1) = q_pred; y = []; if eq(sim_data.robot, 0) fun = @(t, q, u_discr, sim_data) unicycle(t, q, u_discr, sim_data); elseif eq(sim_data.robot, 1) fun = @(t, q, u_discr, sim_data) diffdrive(t, q, u_discr, sim_data); end for n = 1:steps sim_data.old_u_corr = u_corr; sim_data.old_u_track = u_track; sim_data.old_u = u_discr; tspan = [(n-1)*tc n*tc]; z0 = q(end, :); opt = odeset('MaxStep', 0.005); [v, z] = ode45(@(v, z) fun(v, z, u_discr, sim_data), tspan, z0, opt); q = [q; z]; t = [t; v]; [u_discr, u_track, u_corr, U_corr_history, q_pred] = control_act(t(end), q(end, :), sim_data); sim_data.U_corr_history = U_corr_history; U = [U; ones(length(v), 1)*u_discr']; U_corr = [U_corr; ones(length(v), 1)*u_corr']; U_track = [U_track; ones(length(v), 1)*u_track']; Q_pred(:, :, 1+n) = q_pred; U_corr_pred_history(:,:,n) = permute(U_corr_history, [3, 1, 2]); y1 = q(:, 1) + sim_data.b * cos(q(:,3)); y2 = q(:, 2) + sim_data.b * sin(q(:,3)); y = [y; [y1, y2]]; end ref_t = double(subs(sim_data.ref, t'))'; end %%