clc clear all close all %% global variables global q0 ref dref b tc K SATURATION tc tfin USE_PREDICTION PREDICTION_HORIZON PREDICTION_SATURATION_TOLERANCE; %% variables TRAJECTORY = 6 INITIAL_CONDITIONS = 1 USE_PREDICTION = false PREDICTION_HORIZON = 5 % distance from the center of the unicycle to the point being tracked % ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b, % minore l'errore b = 0.2 % proportional gain K = eye(2)*2 tc = 0.1 tfin=30 % saturation % HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s. % Radius of wheels 10cm. Wheels distanced 15cm from each other % applying transformation, v % saturation = [1.57, 20]; SATURATION = [1; 1]; PREDICTION_SATURATION_TOLERANCE = 0.0; %% launch simulation % initial state % In order, [x, y, theta] q0 = set_initial_conditions(INITIAL_CONDITIONS) % trajectory to track [ref, dref] = set_trajectory(TRAJECTORY) global tu uu figure(1) PREDICTION_HORIZON = 0; [t, q, ref_t, U] = simulate_discr(tfin); plot_results(t, q, ref_t, U); figure(2) PREDICTION_HORIZON = 1; [t1, q1, ref_t1, U1] = simulate_discr(tfin); plot_results(t1, q1, ref_t1, U1); figure(3) PREDICTION_HORIZON = 2; [t2, q2, ref_t2, U2] = simulate_discr(tfin); plot_results(t2, q2, ref_t2, U2); %figure(3) %subplot(1, 2, 1) %plot(tu, uu(1, :)) %subplot(1, 2, 2) %plot(tu, uu(2, :)) %plot_results(t, x-x1, ref_t-ref_t1, U-U1); %% FUNCTION DECLARATIONS % Discrete-time simulation function [t, q, ref_t, U] = simulate_discr(tfin) global ref q0 u_discr tc steps = tfin/tc q = q0'; t = 0; u_discr = control_act(t, q0); U = u_discr'; for n = 1:steps tspan = [(n-1)*tc n*tc]; z0 = q(end, :); [v, z] = ode45(@sistema, tspan, z0); q = [q; z]; t = [t; v]; u_discr = control_act(t(end), q(end, :)); U = [U; ones(length(v), 1)*u_discr']; end ref_t = double(subs(ref, t'))'; end % Continuos-time simulation function [t, q, ref, U] = simulate_cont(tfin) global ref q0 % simulation time tspan = linspace(0, tfin); % execute simulation [t, q] = ode45(@sistema, tspan, q0); % recalc and save input at each timestep ts = size(t); rows = ts(1); U = zeros(rows, 2); for row = 1:rows U(row, :) = control_act(t(row), q(row, :)); end % plot results ref = double(subs(ref, t'))'; end % Plots function plot_results(t, x, ref, U) subplot(2,2,1) hold on plot(ref(:, 1), ref(:, 2), "DisplayName", "Ref") plot(x(:, 1), x(:, 2), "DisplayName", "state") xlabel('x') ylabel('y') legend() subplot(2,2,3) plot(t, U(:, 1)) xlabel('t') ylabel('input v') subplot(2,2,4) plot(t, U(:, 2)) xlabel('t') ylabel('input w') subplot(4,4,3) hold on xlabel('t') ylabel('x') plot(t, ref(:, 1), "DisplayName", "X_{ref}"); plot(t, x(:, 1), "DisplayName", "X"); legend() hold off subplot(4,4,4) plot(t, ref(:, 1) - x(:, 1)); xlabel('t') ylabel('x error') subplot(4,4,7) hold on xlabel('t') ylabel('y') plot(t, ref(:, 2), "DisplayName", "Y_{ref}"); plot(t, x(:, 2), "DisplayName", "Y"); legend() hold off subplot(4,4,8) plot(t, ref(:, 2) - x(:, 2)); xlabel('t') ylabel('y error') end