Merge pull request 'multithread' (#1) from multithread into main

Reviewed-on: #1
pull/2/head^2
EmaMaker 2023-05-20 22:33:56 +02:00
commit 802257abe3
13 changed files with 344 additions and 452 deletions

View File

@ -4,6 +4,7 @@ project(cmake-project-template)
set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -O3") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -O3")
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -g")
set(CMAKE_INSTALL_PREFIX ${PROJECT_SOURCE_DIR}) set(CMAKE_INSTALL_PREFIX ${PROJECT_SOURCE_DIR})

View File

@ -6,7 +6,7 @@
#include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp> #include <glm/gtc/type_ptr.hpp>
#include <iostream> #include <atomic>
class Camera class Camera
{ {
@ -17,7 +17,7 @@ public:
view = glm::mat4(1.0f); view = glm::mat4(1.0f);
// This matrix needs to be also updated in viewPortCallback whenever it is changed // This matrix needs to be also updated in viewPortCallback whenever it is changed
projection = glm::perspective(glm::radians(90.0f), 800.0f / 600.0f, 0.1f, 200.0f); projection = glm::perspective(glm::radians(90.0f), 800.0f / 600.0f, 0.1f, 1200.0f);
} }
void update(GLFWwindow *window, float deltaTime) void update(GLFWwindow *window, float deltaTime)
@ -38,6 +38,9 @@ public:
if (glfwGetKey(window, GLFW_KEY_Z) == GLFW_PRESS) if (glfwGetKey(window, GLFW_KEY_Z) == GLFW_PRESS)
this->cameraPos -= cameraSpeed * cameraUp; this->cameraPos -= cameraSpeed * cameraUp;
posX = cameraPos.x;
posY = cameraPos.y;
posZ = cameraPos.z;
direction.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch)); direction.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
direction.y = sin(glm::radians(pitch)); direction.y = sin(glm::radians(pitch));
@ -49,7 +52,7 @@ public:
void viewPortCallBack(GLFWwindow *window, int width, int height) void viewPortCallBack(GLFWwindow *window, int width, int height)
{ {
projection = glm::perspective(glm::radians(80.0f), (float)width / (float)height, 0.1f, 350.0f); projection = glm::perspective(glm::radians(80.0f), (float)width / (float)height, 0.1f, 1200.0f);
} }
void mouseCallback(GLFWwindow *window, double xpos, double ypos) void mouseCallback(GLFWwindow *window, double xpos, double ypos)
@ -78,6 +81,10 @@ public:
glm::mat4 getView() { return view; } glm::mat4 getView() { return view; }
glm::mat4 getProjection() { return projection; } glm::mat4 getProjection() { return projection; }
float getAtomicPosX() { return posX; }
float getAtomicPosY() { return posY; }
float getAtomicPosZ() { return posZ; }
// Plane extraction as per Gribb&Hartmann // Plane extraction as per Gribb&Hartmann
// 6 planes, each with 4 components (a,b,c,d) // 6 planes, each with 4 components (a,b,c,d)
void getFrustumPlanes(glm::vec4 planes[6], bool normalize) void getFrustumPlanes(glm::vec4 planes[6], bool normalize)
@ -105,7 +112,7 @@ public:
private: private:
glm::vec3 cameraPos = glm::vec3(0.0, 80.0f, 0.0f); glm::vec3 cameraPos = glm::vec3(256.0, 80.0f, 256.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f); glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f); glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 direction = glm::vec3(0.0f); glm::vec3 direction = glm::vec3(0.0f);
@ -114,6 +121,8 @@ private:
float lastX = 400, lastY = 300; float lastX = 400, lastY = 300;
float yaw, pitch; float yaw, pitch;
std::atomic<float> posX, posY, posZ;
}; };
#endif #endif

View File

@ -5,6 +5,7 @@
#include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp> #include <glm/gtc/type_ptr.hpp>
#include <atomic>
#include <array> #include <array>
#include <bitset> #include <bitset>
#include <mutex> #include <mutex>
@ -15,7 +16,7 @@
#include "intervalmap.hpp" #include "intervalmap.hpp"
#include "shader.hpp" #include "shader.hpp"
#define CHUNK_SIZE 16 #define CHUNK_SIZE 32
#define CHUNK_VOLUME (CHUNK_SIZE * CHUNK_SIZE * CHUNK_SIZE) #define CHUNK_VOLUME (CHUNK_SIZE * CHUNK_SIZE * CHUNK_SIZE)
#define CHUNK_MAX_INDEX (CHUNK_VOLUME - 1) #define CHUNK_MAX_INDEX (CHUNK_VOLUME - 1)
@ -24,9 +25,11 @@ namespace Chunk
constexpr uint8_t CHUNK_STATE_GENERATED = 1; constexpr uint8_t CHUNK_STATE_GENERATED = 1;
constexpr uint8_t CHUNK_STATE_MESHED = 2; constexpr uint8_t CHUNK_STATE_MESHED = 2;
constexpr uint8_t CHUNK_STATE_MESH_LOADED = 3; constexpr uint8_t CHUNK_STATE_MESH_LOADED = 4;
constexpr uint8_t CHUNK_STATE_LOADED = 4; constexpr uint8_t CHUNK_STATE_LOADED = 8;
constexpr uint8_t CHUNK_STATE_EMPTY = 7; constexpr uint8_t CHUNK_STATE_OUTOFVISION = 16;
constexpr uint8_t CHUNK_STATE_UNLOADED = 32;
constexpr uint8_t CHUNK_STATE_EMPTY = 64;
int coord3DTo1D(int x, int y, int z); int coord3DTo1D(int x, int y, int z);
@ -38,9 +41,12 @@ namespace Chunk
~Chunk(); ~Chunk();
public: public:
void createBuffers();
void deleteBuffers();
glm::vec3 getPosition() { return this->position; } glm::vec3 getPosition() { return this->position; }
std::bitset<8> getTotalState() { return this->state; } uint8_t getTotalState() { return this->state; }
bool getState(uint8_t n) { return this->state.test(n); } bool getState(uint8_t n) { return (this->state & n) == n; }
void setState(uint8_t nstate, bool value); void setState(uint8_t nstate, bool value);
void setBlock(Block b, int x, int y, int z); void setBlock(Block b, int x, int y, int z);
@ -50,19 +56,14 @@ namespace Chunk
std::unique_ptr<Block[]> getBlocksArray(int* len) { return (this->blocks.toArray(len)); } std::unique_ptr<Block[]> getBlocksArray(int* len) { return (this->blocks.toArray(len)); }
public: public:
GLuint VAO{0}, VBO{0}, EBO{0}, colorBuffer{0}, vIndex{0}; GLuint VAO{0}, VBO{0}, EBO{0}, colorBuffer{0}, numVertices{0};
std::atomic<float> unload_timer{0};
std::mutex mutex_state;
std::vector<GLfloat> vertices;
std::vector<GLfloat> colors;
std::vector<GLuint> indices;
private: private:
glm::vec3 position{}; glm::vec3 position{};
IntervalMap<Block> blocks{}; IntervalMap<Block> blocks{};
std::bitset<8> state{0}; std::atomic_uint8_t state{0};
}; };
}; };

View File

@ -1,33 +1,27 @@
#ifndef CHUNKMANAGER_H #ifndef CHUNKMANAGER_H
#define CHUNKMANAGER_H #define CHUNKMANAGER_H
// Second to be passed outside of render distance for a chunk to be destroyed // Seconds to be passed outside of render distance for a chunk to be destroyed
#define UNLOAD_TIMEOUT 10 #define UNLOAD_TIMEOUT 10
#include <unordered_map>
#include <thread> #include <thread>
#include <oneapi/tbb/concurrent_queue.h>
#include "chunk.hpp" #include "chunk.hpp"
#include "globals.hpp" #include "globals.hpp"
namespace chunkmanager namespace chunkmanager
{ {
std::thread initGenThread(); std::thread init();
std::thread initMeshThread();
void stopGenThread();
void stopMeshThread();
void mesh();
void generate();
void init();
void blockpick(bool place); void blockpick(bool place);
uint32_t calculateIndex(uint16_t i, uint16_t j, uint16_t k); uint32_t calculateIndex(uint16_t i, uint16_t j, uint16_t k);
void stop();
void destroy(); void destroy();
std::unordered_map<std::uint32_t, Chunk::Chunk*>& getChunks(); oneapi::tbb::concurrent_queue<Chunk::Chunk*>& getDeleteVector();
std::array<std::array<int, 3>, chunks_volume>& getChunksIndices(); std::array<std::array<int, 3>, chunks_volume>& getChunksIndices();
void update(float deltaTime); void update();
void updateChunk(uint32_t, uint16_t, uint16_t, uint16_t);
} }
#endif #endif

View File

@ -1,22 +1,29 @@
#ifndef CHUNKMESH_H #ifndef CHUNKMESH_H
#define CHUNKMESH_H #define CHUNKMESH_H
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <string> #include <string>
#include <vector> #include <vector>
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <oneapi/tbb/concurrent_queue.h>
#include "chunk.hpp" #include "chunk.hpp"
#include "globals.hpp" #include "globals.hpp"
#include "shader.hpp" #include "shader.hpp"
namespace chunkmesher{ namespace chunkmesher{
void mesh(Chunk::Chunk* chunk); struct MeshData{
void sendtogpu(Chunk::Chunk* chunk); Chunk::Chunk* chunk;
void draw(Chunk::Chunk* chunk, glm::mat4 model); std::vector<GLfloat> vertices;
std::vector<GLfloat> colors;
std::vector<GLuint> indices;
};
oneapi::tbb::concurrent_queue<MeshData*>& getMeshDataQueue();
void quad(Chunk::Chunk* chunk, glm::vec3 bottomLeft, glm::vec3 topLeft, glm::vec3 topRight, void mesh(Chunk::Chunk* chunk);
void sendtogpu(MeshData* mesh_data);
void quad(MeshData* mesh_data, glm::vec3 bottomLeft, glm::vec3 topLeft, glm::vec3 topRight,
glm::vec3 bottomRight, glm::vec3 normal, Block block, int dim, bool backFace); glm::vec3 bottomRight, glm::vec3 normal, Block block, int dim, bool backFace);
} }

View File

@ -1,13 +1,22 @@
#ifndef RENDERER_H #ifndef RENDERER_H
#define RENDERER_H #define RENDERER_H
#include <oneapi/tbb/concurrent_unordered_set.h>
#include <oneapi/tbb/concurrent_queue.h>
#include "chunk.hpp"
#include "chunkmesher.hpp"
#include "shader.hpp" #include "shader.hpp"
namespace renderer{ namespace renderer{
typedef oneapi::tbb::concurrent_unordered_set<Chunk::Chunk*> RenderSet;
void init(); void init();
void render(); void render();
void destroy(); void destroy();
Shader* getRenderShader(); Shader* getRenderShader();
RenderSet& getChunksToRender();
oneapi::tbb::concurrent_queue<chunkmesher::MeshData*>& getMeshDataQueue();
}; };

View File

@ -5,5 +5,5 @@ set(SOURCE_FILES main.cpp chunk.cpp chunkmanager.cpp chunkmesher.cpp chunkgenera
add_executable(OpenGLTest ${SOURCE_FILES}) add_executable(OpenGLTest ${SOURCE_FILES})
target_link_libraries(OpenGLTest glfw glad glm) target_link_libraries(OpenGLTest glfw tbb glad glm)
install(TARGETS OpenGLTest DESTINATION ${DIVISIBLE_INSTALL_BIN_DIR}) install(TARGETS OpenGLTest DESTINATION ${DIVISIBLE_INSTALL_BIN_DIR})

View File

@ -19,7 +19,13 @@ namespace Chunk
{ {
this->position = pos; this->position = pos;
this->setState(CHUNK_STATE_EMPTY, true); this->setState(CHUNK_STATE_EMPTY, true);
}
Chunk ::~Chunk()
{
}
void Chunk::createBuffers(){
glGenVertexArrays(1, &(this->VAO)); glGenVertexArrays(1, &(this->VAO));
glGenBuffers(1, &(this->colorBuffer)); glGenBuffers(1, &(this->colorBuffer));
glGenBuffers(1, &(this->VBO)); glGenBuffers(1, &(this->VBO));
@ -27,18 +33,12 @@ namespace Chunk
} }
Chunk ::~Chunk() void Chunk::deleteBuffers(){
{
glDeleteBuffers(1, &(this->colorBuffer)); glDeleteBuffers(1, &(this->colorBuffer));
glDeleteBuffers(1, &(this->VBO)); glDeleteBuffers(1, &(this->VBO));
glDeleteBuffers(1, &(this->EBO)); glDeleteBuffers(1, &(this->EBO));
glDeleteVertexArrays(1, &(this->VAO)); glDeleteVertexArrays(1, &(this->VAO));
vertices.clear();
indices.clear();
colors.clear();
mutex_state.unlock();
} }
Block Chunk::getBlock(int x, int y, int z) Block Chunk::getBlock(int x, int y, int z)
@ -60,8 +60,8 @@ namespace Chunk
void Chunk::setState(uint8_t nstate, bool value) void Chunk::setState(uint8_t nstate, bool value)
{ {
if (value) if (value)
this->state.set((size_t)nstate); this->state.fetch_or(nstate);
else else
this->state.reset((size_t)nstate); this->state.fetch_and(~nstate);
} }
} }

View File

@ -14,8 +14,8 @@
#define NOISE_DIRT_MIN 2 #define NOISE_DIRT_MIN 2
#define NOISE_DIRT_X_MULT 0.001f #define NOISE_DIRT_X_MULT 0.001f
#define NOISE_DIRT_Z_MULT 0.001f #define NOISE_DIRT_Z_MULT 0.001f
#define NOISE_GRASS_X_MULT 0.035f #define NOISE_GRASS_X_MULT 0.018f
#define NOISE_GRASS_Z_MULT 0.035f #define NOISE_GRASS_Z_MULT 0.018f
void generatePyramid(Chunk::Chunk *chunk); void generatePyramid(Chunk::Chunk *chunk);
void generateNoise(Chunk::Chunk *chunk); void generateNoise(Chunk::Chunk *chunk);
@ -56,10 +56,12 @@ void generateNoise(Chunk::Chunk *chunk)
int z = HILBERT_XYZ_DECODE[s][2] + CHUNK_SIZE * chunk->getPosition().z; int z = HILBERT_XYZ_DECODE[s][2] + CHUNK_SIZE * chunk->getPosition().z;
int d2 = HILBERT_XYZ_DECODE[s][0] * CHUNK_SIZE + HILBERT_XYZ_DECODE[s][2]; int d2 = HILBERT_XYZ_DECODE[s][0] * CHUNK_SIZE + HILBERT_XYZ_DECODE[s][2];
if (grassNoiseLUT[d2] == -1) if (grassNoiseLUT[d2] == -1){
grassNoiseLUT[d2] = GRASS_OFFSET + (int)((0.5 + noiseGen1.eval(x * NOISE_GRASS_X_MULT, z * NOISE_GRASS_Z_MULT) * NOISE_GRASS_MULT)); grassNoiseLUT[d2] = GRASS_OFFSET + (int)((0.5 + noiseGen1.eval(x * NOISE_GRASS_X_MULT, z * NOISE_GRASS_Z_MULT) * NOISE_GRASS_MULT));
if (dirtNoiseLUT[d2] == -1) }
if (dirtNoiseLUT[d2] == -1){
dirtNoiseLUT[d2] = NOISE_DIRT_MIN + (int)((0.5 + noiseGen2.eval(x * NOISE_DIRT_X_MULT, z * NOISE_DIRT_Z_MULT) * NOISE_DIRT_MULT)); dirtNoiseLUT[d2] = NOISE_DIRT_MIN + (int)((0.5 + noiseGen2.eval(x * NOISE_DIRT_X_MULT, z * NOISE_DIRT_Z_MULT) * NOISE_DIRT_MULT));
}
int grassNoise = grassNoiseLUT[d2]; int grassNoise = grassNoiseLUT[d2];
int dirtNoise = dirtNoiseLUT[d2]; int dirtNoise = dirtNoiseLUT[d2];
@ -84,6 +86,7 @@ void generateNoise(Chunk::Chunk *chunk)
} }
chunk->setBlocks(block_prev_start, CHUNK_VOLUME, block_prev); chunk->setBlocks(block_prev_start, CHUNK_VOLUME, block_prev);
chunk->setState(Chunk::CHUNK_STATE_GENERATED, true);
} }
void generateNoise3D(Chunk::Chunk *chunk) { void generateNoise3D(Chunk::Chunk *chunk) {

View File

@ -1,105 +1,40 @@
#include "chunkmanager.hpp"
#include <atomic>
#include <math.h>
#include <vector>
#include <thread>
#include <glm/glm.hpp> #include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <oneapi/tbb/concurrent_hash_map.h>
#include "chunk.hpp" #include "chunk.hpp"
#include "chunkgenerator.hpp" #include "chunkgenerator.hpp"
#include "chunkmanager.hpp"
#include "chunkmesher.hpp" #include "chunkmesher.hpp"
#include "globals.hpp" #include "globals.hpp"
#include "renderer.hpp"
#include <atomic>
#include <iostream>
#include <math.h>
#include <mutex>
#include <set>
#include <string>
#include <unordered_map>
#include <thread>
namespace chunkmanager namespace chunkmanager
{ {
std::unordered_map<std::uint32_t, Chunk::Chunk *> chunks; typedef oneapi::tbb::concurrent_hash_map<uint32_t, Chunk::Chunk*> ChunkTable;
ChunkTable chunks;
//std::unordered_map<std::uint32_t, Chunk::Chunk *> chunks;
std::array<std::array<int, 3>, chunks_volume> chunks_indices; std::array<std::array<int, 3>, chunks_volume> chunks_indices;
// thread management std::atomic_bool should_run;
std::mutex mutex_queue_generate;
std::mutex mutex_queue_mesh;
std::set<Chunk::Chunk *> to_generate;
std::set<Chunk::Chunk *> to_mesh;
std::atomic_bool generate_should_run;
std::atomic_bool mesh_should_run;
// update variables int chunks_volume_real;
uint8_t f = 0; std::thread init(){
int rr{RENDER_DISTANCE * RENDER_DISTANCE};
glm::vec3 cameraPos;
int chunkX, chunkY, chunkZ;
// disposal
std::unordered_map<uint32_t, float> to_delete;
std::set<uint32_t> to_delete_delete;
void mesh()
{
while (mesh_should_run)
if (mutex_queue_mesh.try_lock())
{
for (const auto &c : to_mesh)
{
if (c->mutex_state.try_lock())
{
chunkmesher::mesh(c);
c->setState(Chunk::CHUNK_STATE_MESHED, true);
c->mutex_state.unlock();
}
}
to_mesh.clear();
mutex_queue_mesh.unlock();
}
}
void generate()
{
while (generate_should_run)
if (mutex_queue_generate.try_lock())
{
for (const auto &c : to_generate)
{
if (c->mutex_state.try_lock())
{
generateChunk(c);
c->setState(Chunk::CHUNK_STATE_GENERATED, true);
c->mutex_state.unlock();
}
}
to_generate.clear();
mutex_queue_generate.unlock();
}
}
std::thread initMeshThread()
{
mesh_should_run = true;
std::thread mesh_thread(mesh);
return mesh_thread;
}
std::thread initGenThread()
{
generate_should_run = true;
std::thread gen_thread(generate);
return gen_thread;
}
void init(){
int index{0}; int index{0};
int rr{RENDER_DISTANCE * RENDER_DISTANCE};
int xp{0}, x{0}; int xp{0}, x{0};
bool b = true; bool b = true;
// Iterate over all chunks, in concentric spheres starting fron the player and going // Iterate over all chunks, in concentric spheres starting fron the player and going outwards. Alternate left and right
// outwards. Alternate left and right
// Eq. of the sphere (x - a)² + (y - b)² + (z - c)² = r² // Eq. of the sphere (x - a)² + (y - b)² + (z - c)² = r²
while (xp <= RENDER_DISTANCE) while (xp <= RENDER_DISTANCE)
{ {
@ -131,168 +66,57 @@ namespace chunkmanager
} }
else b = false; else b = false;
} }
chunks_volume_real = index;
// Also init mesh data queue
for(int i = 0; i < 10; i++)
chunkmesher::getMeshDataQueue().push(new chunkmesher::MeshData());
should_run = true;
std::thread update_thread (update);
return update_thread;
} }
void update(float deltaTime) oneapi::tbb::concurrent_queue<Chunk::Chunk*> chunks_todelete;
{ int nUnloaded{0};
// Try to lock resources void update(){
f = 0; while(should_run) {
f |= mutex_queue_generate.try_lock(); int chunkX=static_cast<int>(theCamera.getAtomicPosX() / CHUNK_SIZE);
f |= mutex_queue_mesh.try_lock() << 1; int chunkY=static_cast<int>(theCamera.getAtomicPosY() / CHUNK_SIZE);
int chunkZ=static_cast<int>(theCamera.getAtomicPosZ() / CHUNK_SIZE);
cameraPos = theCamera.getPos(); // Update other chunks
chunkX=static_cast<int>(cameraPos.x) / CHUNK_SIZE; for(int i = 0; i < chunks_volume_real; i++) {
chunkY=static_cast<int>(cameraPos.y) / CHUNK_SIZE; const uint16_t x = chunks_indices[i][0] + chunkX;
chunkZ=static_cast<int>(cameraPos.z) / CHUNK_SIZE; const uint16_t y = chunks_indices[i][1] + chunkY;
const uint16_t z = chunks_indices[i][2] + chunkZ;
const uint32_t index = calculateIndex(x, y, z);
// Use time in float to be consistent with glfw if(x > 1023 || y > 1023 || z > 1023) continue;
float currentTime = glfwGetTime();
// Check for far chunks that need to be cleaned up from memory ChunkTable::accessor a;
int nUnloaded{0}; if(!chunks.find(a, index)) chunks.emplace(a, std::make_pair(index, new Chunk::Chunk(glm::vec3(x,y,z))));
for(const auto& n : chunks){
Chunk::Chunk* c = n.second;
int x{(int)(c->getPosition().x)};
int y{(int)(c->getPosition().y)};
int z{(int)(c->getPosition().z)};
if( (chunkX-x)*(chunkX-x) + (chunkY-y)*(chunkY-y) + (chunkZ-z)*(chunkZ-z) >=
(int)(RENDER_DISTANCE*1.5)*(int)(RENDER_DISTANCE*1.5))
if(to_delete.find(n.first) == to_delete.end())
to_delete.insert(std::make_pair(n.first, currentTime));
}
for(const auto& n :to_delete){
if( currentTime>=n.second + UNLOAD_TIMEOUT) {
delete chunks.at(n.first);
chunks.erase(n.first);
nUnloaded++;
// Delete afterwards to avoid exception due to invalid iterators if(! (a->second->getState(Chunk::CHUNK_STATE_GENERATED))) generateChunk(a->second);
to_delete_delete.insert(n.first); if(! (a->second->getState(Chunk::CHUNK_STATE_MESHED))) chunkmesher::mesh(a->second);
renderer::getChunksToRender().insert(a->second);
a.release();
} }
}
for(uint32_t i : to_delete_delete) to_delete.erase(i);
to_delete_delete.clear();
if(nUnloaded) std::cout << "Unloaded " << nUnloaded << " chunks\n";
for(int i = 0; i < chunks_volume; i++) Chunk::Chunk* n;
updateChunk(calculateIndex(chunks_indices[i][0] + chunkX, nUnloaded = 0;
chunks_indices[i][1] + chunkY, while(chunks_todelete.try_pop(n)){
chunks_indices[i][2] + chunkZ), int x = static_cast<uint16_t>(n->getPosition().x);
chunks_indices[i][0] + chunkX, int y = static_cast<uint16_t>(n->getPosition().y);
chunks_indices[i][1] + chunkY, int z = static_cast<uint16_t>(n->getPosition().z);
chunks_indices[i][2] + chunkZ); if(x > 1023 || y > 1023 || z > 1023) continue;
const uint32_t index = calculateIndex(x, y, z);
// Unlock mutexes if previously locked. Unlocking a mutex not locked by the current thread delete n;
// or already locked is undefined behaviour, so checking has to be done chunks.erase(index);
if ((f & 1)) nUnloaded++;
mutex_queue_generate.unlock();
if ((f & 2))
mutex_queue_mesh.unlock();
}
// Generation and meshing happen in two separate threads from the main one
// Chunk states are used to decide which actions need to be done on the chunk and sets+mutexes
// to pass the chunks to be operated on between the threads.
// Uploading data to GPU still needs to be done in the main thread, or another OpenGL context
// needs to be opened, which further complicates stuff.
void updateChunk(uint32_t index, uint16_t i, uint16_t j, uint16_t k)
{
if (chunks.find(index) == chunks.end())
{
Chunk::Chunk *c = new Chunk::Chunk(glm::vec3(i, j, k));
chunks.insert(std::make_pair(index, c));
}
else
{
Chunk::Chunk *c = chunks.at(index);
if (!(c->mutex_state.try_lock()))
return;
if (!c->getState(Chunk::CHUNK_STATE_GENERATED))
{
if (f & 1)
to_generate.insert(c);
}
else
{
if (!c->getState(Chunk::CHUNK_STATE_MESHED))
{
if (f & 2)
to_mesh.insert(c);
}
else
{
if (!c->getState(Chunk::CHUNK_STATE_MESH_LOADED)) chunkmesher::sendtogpu(c);
}
}
c->mutex_state.unlock();
}
}
void blockpick(bool place){
// cast a ray from the camera in the direction pointed by the camera itself
glm::vec3 pos = cameraPos;
for(float t = 0.0; t <= 10.0; t += 0.5){
// traverse the ray a block at the time
pos = theCamera.getPos() + t * theCamera.getFront();
// get which chunk and block the ray is at
int px = ((int)(pos.x))/CHUNK_SIZE;
int py = ((int)(pos.y))/CHUNK_SIZE;
int pz = ((int)(pos.z))/CHUNK_SIZE;
int bx = pos.x - px*CHUNK_SIZE;
int by = pos.y - py*CHUNK_SIZE;
int bz = pos.z - pz*CHUNK_SIZE;
// exit early if the position is invalid or the chunk does not exist
if(px < 0 || py < 0 || pz < 0) return;
if(chunks.find(calculateIndex(px, py, pz)) == chunks.end()) return;
Chunk::Chunk* c = chunks.at(calculateIndex(px, py, pz));
Block b = c->getBlock(bx, by, bz);
// if the block is non empty
if(b != Block::AIR){
// if placing a new block
if(place){
// Go half a block backwards on the ray, to check the block where the ray was
// coming from
// Doing this and not using normal adds the unexpected (and unwanted) ability to
// place blocks diagonally, without faces colliding with the block that has
// been clicked
pos -= theCamera.getFront()*0.5f;
int px1 = ((int)(pos.x))/CHUNK_SIZE;
int py1 = ((int)(pos.y))/CHUNK_SIZE;
int pz1 = ((int)(pos.z))/CHUNK_SIZE;
int bx1 = pos.x - px1*CHUNK_SIZE;
int by1 = pos.y - py1*CHUNK_SIZE;
int bz1 = pos.z - pz1*CHUNK_SIZE;
// exit early if the position is invalid or the chunk does not exist
if(px1 < 0 || py1 < 0 || pz1 < 0) return;
if(chunks.find(calculateIndex(px1, py1, pz1)) == chunks.end()) return;
Chunk::Chunk* c1 = chunks.at(calculateIndex(px1, py1, pz1));
// place the new block (only stone for now)
c1->setBlock( Block::STONE, bx1, by1, bz1);
// update the mesh of the chunk
chunkmesher::mesh(c1);
// mark the mesh of the chunk the be updated on the gpu
c1->setState(Chunk::CHUNK_STATE_MESH_LOADED, false);
}else{
// replace the current block with air to remove it
c->setBlock( Block::AIR, bx, by, bz);
// update the mesh of the chunk
chunkmesher::mesh(c);
// mark the mesh of the chunk the be updated on the gpu
c->setState(Chunk::CHUNK_STATE_MESH_LOADED, false);
}
break;
} }
} }
} }
@ -302,21 +126,14 @@ namespace chunkmanager
return i | (j << 10) | (k << 20); return i | (j << 10) | (k << 20);
} }
std::unordered_map<std::uint32_t, Chunk::Chunk*>& getChunks(){ return chunks; } oneapi::tbb::concurrent_queue<Chunk::Chunk*>& getDeleteVector(){ return chunks_todelete; }
std::array<std::array<int, 3>, chunks_volume>& getChunksIndices(){ return chunks_indices; } std::array<std::array<int, 3>, chunks_volume>& getChunksIndices(){ return chunks_indices; }
void destroy() void stop() { should_run=false; }
{ void destroy(){
for (auto &n : chunks) /*for(const auto& n : chunks){
delete n.second; delete n.second;
} }*/
void stopGenThread(){
generate_should_run = false;
}
void stopMeshThread(){
mesh_should_run = false;
} }
}; };

View File

@ -5,13 +5,20 @@
#include "chunk.hpp" #include "chunk.hpp"
#include "chunkmesher.hpp" #include "chunkmesher.hpp"
#include "globals.hpp" #include "globals.hpp"
#include "renderer.hpp"
#include "spacefilling.hpp" #include "spacefilling.hpp"
#include "utils.hpp" #include "utils.hpp"
namespace chunkmesher{ namespace chunkmesher{
oneapi::tbb::concurrent_queue<MeshData*> MeshDataQueue;
oneapi::tbb::concurrent_queue<MeshData*>& getMeshDataQueue(){ return MeshDataQueue; }
void mesh(Chunk::Chunk* chunk) void mesh(Chunk::Chunk* chunk)
{ {
MeshData* mesh_data;
if(!MeshDataQueue.try_pop(mesh_data)) return;
/* /*
* Taking inspiration from 0fps and the jme3 porting at * Taking inspiration from 0fps and the jme3 porting at
@ -29,18 +36,25 @@ void mesh(Chunk::Chunk* chunk)
*/ */
// Cleanup previous data // Cleanup previous data
chunk->vertices.clear(); chunk->numVertices = 0;
chunk->indices.clear(); mesh_data->chunk = chunk;
chunk->colors.clear(); mesh_data->vertices.clear();
chunk->vIndex = 0; mesh_data->indices.clear();
mesh_data->colors.clear();
// Abort if chunk is empty // Abort if chunk is empty
if(chunk->getState(Chunk::CHUNK_STATE_EMPTY)) return; if(chunk->getState(Chunk::CHUNK_STATE_EMPTY)){
chunk->setState(Chunk::CHUNK_STATE_MESHED, true);
renderer::getMeshDataQueue().push(mesh_data);
return;
}
// convert tree to array since it is easier to work with it // convert tree to array since it is easier to work with it
int length{0}; int length{0};
std::unique_ptr<Block[]> blocks = chunk->getBlocksArray(&length); std::unique_ptr<Block[]> blocks = chunk->getBlocksArray(&length);
if(length == 0) { if(length == 0) {
chunk->setState(Chunk::CHUNK_STATE_MESHED, true);
renderer::getMeshDataQueue().push(mesh_data);
return; return;
} }
@ -146,7 +160,7 @@ void mesh(Chunk::Chunk* chunk)
dv[2] = 0; dv[2] = 0;
dv[v] = h; dv[v] = h;
quad(chunk, glm::vec3(x[0], x[1], x[2]), quad(mesh_data, glm::vec3(x[0], x[1], x[2]),
glm::vec3(x[0] + du[0], x[1] + du[1], x[2] + du[2]), glm::vec3(x[0] + du[0], x[1] + du[1], x[2] + du[2]),
glm::vec3(x[0] + du[0] + dv[0], x[1] + du[1] + dv[1], glm::vec3(x[0] + du[0] + dv[0], x[1] + du[1] + dv[1],
x[2] + du[2] + dv[2]), x[2] + du[2] + dv[2]),
@ -180,18 +194,23 @@ void mesh(Chunk::Chunk* chunk)
} }
} }
} }
chunk->setState(Chunk::CHUNK_STATE_MESHED, true);
renderer::getMeshDataQueue().push(mesh_data);
return;
} }
void sendtogpu(Chunk::Chunk* chunk) void sendtogpu(MeshData* mesh_data)
{ {
if (chunk->vIndex > 0) if (mesh_data->chunk->numVertices > 0)
{ {
if(mesh_data->chunk->VAO == 0) mesh_data->chunk->createBuffers();
// bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s). // bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
glBindVertexArray(chunk->VAO); glBindVertexArray(mesh_data->chunk->VAO);
glBindBuffer(GL_ARRAY_BUFFER, chunk->VBO); glBindBuffer(GL_ARRAY_BUFFER, mesh_data->chunk->VBO);
glBufferData(GL_ARRAY_BUFFER, chunk->vertices.size() * sizeof(GLfloat), &(chunk->vertices[0]), GL_STATIC_DRAW); glBufferData(GL_ARRAY_BUFFER, mesh_data->vertices.size() * sizeof(GLfloat), &(mesh_data->vertices[0]), GL_STATIC_DRAW);
// position attribute // position attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0);
@ -202,12 +221,12 @@ void sendtogpu(Chunk::Chunk* chunk)
sizeof(float))); sizeof(float)));
glEnableVertexAttribArray(1); glEnableVertexAttribArray(1);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, chunk->EBO); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh_data->chunk->EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, chunk->indices.size() * sizeof(GLuint), &(chunk->indices[0]), GL_STATIC_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, mesh_data->indices.size() * sizeof(GLuint), &(mesh_data->indices[0]), GL_STATIC_DRAW);
// texcoords attribute // texcoords attribute
glBindBuffer(GL_ARRAY_BUFFER, chunk->colorBuffer); glBindBuffer(GL_ARRAY_BUFFER, mesh_data->chunk->colorBuffer);
glBufferData(GL_ARRAY_BUFFER, chunk->colors.size() * sizeof(GLfloat), &(chunk->colors[0]), GL_STATIC_DRAW); glBufferData(GL_ARRAY_BUFFER, mesh_data->colors.size() * sizeof(GLfloat), &(mesh_data->colors[0]), GL_STATIC_DRAW);
glEnableVertexAttribArray(2); glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void *)0); glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void *)0);
@ -215,119 +234,118 @@ void sendtogpu(Chunk::Chunk* chunk)
glBindVertexArray(0); glBindVertexArray(0);
// save the number of indices of the mesh, it is needed later for drawing // save the number of indices of the mesh, it is needed later for drawing
chunk->vIndex = (GLuint)(chunk->indices.size()); mesh_data->chunk->numVertices = (GLuint)(mesh_data->indices.size());
// once data has been sent to the GPU, it can be cleared from system RAM // once data has been sent to the GPU, it can be cleared from system RAM
chunk->vertices.clear(); mesh_data->vertices.clear();
chunk->indices.clear(); mesh_data->indices.clear();
chunk->colors.clear(); mesh_data->colors.clear();
} }
// mark the chunk mesh has loaded on GPU // mark the chunk mesh has loaded on GPU
chunk->setState(Chunk::CHUNK_STATE_MESH_LOADED, true); mesh_data->chunk->setState(Chunk::CHUNK_STATE_MESH_LOADED, true);
} }
void quad(Chunk::Chunk* chunk, glm::vec3 bottomLeft, glm::vec3 topLeft, glm::vec3 topRight, void quad(MeshData* mesh_data, glm::vec3 bottomLeft, glm::vec3 topLeft, glm::vec3 topRight,
glm::vec3 bottomRight, glm::vec3 normal, Block block, int dim, bool backFace) glm::vec3 bottomRight, glm::vec3 normal, Block block, int dim, bool backFace)
{ {
mesh_data->vertices.push_back(bottomLeft.x);
mesh_data->vertices.push_back(bottomLeft.y);
mesh_data->vertices.push_back(bottomLeft.z);
mesh_data->vertices.push_back(normal.x);
mesh_data->vertices.push_back(normal.y);
mesh_data->vertices.push_back(normal.z);
chunk->vertices.push_back(bottomLeft.x); mesh_data->vertices.push_back(bottomRight.x);
chunk->vertices.push_back(bottomLeft.y); mesh_data->vertices.push_back(bottomRight.y);
chunk->vertices.push_back(bottomLeft.z); mesh_data->vertices.push_back(bottomRight.z);
chunk->vertices.push_back(normal.x); mesh_data->vertices.push_back(normal.x);
chunk->vertices.push_back(normal.y); mesh_data->vertices.push_back(normal.y);
chunk->vertices.push_back(normal.z); mesh_data->vertices.push_back(normal.z);
chunk->vertices.push_back(bottomRight.x); mesh_data->vertices.push_back(topLeft.x);
chunk->vertices.push_back(bottomRight.y); mesh_data->vertices.push_back(topLeft.y);
chunk->vertices.push_back(bottomRight.z); mesh_data->vertices.push_back(topLeft.z);
chunk->vertices.push_back(normal.x); mesh_data->vertices.push_back(normal.x);
chunk->vertices.push_back(normal.y); mesh_data->vertices.push_back(normal.y);
chunk->vertices.push_back(normal.z); mesh_data->vertices.push_back(normal.z);
chunk->vertices.push_back(topLeft.x); mesh_data->vertices.push_back(topRight.x);
chunk->vertices.push_back(topLeft.y); mesh_data->vertices.push_back(topRight.y);
chunk->vertices.push_back(topLeft.z); mesh_data->vertices.push_back(topRight.z);
chunk->vertices.push_back(normal.x); mesh_data->vertices.push_back(normal.x);
chunk->vertices.push_back(normal.y); mesh_data->vertices.push_back(normal.y);
chunk->vertices.push_back(normal.z); mesh_data->vertices.push_back(normal.z);
chunk->vertices.push_back(topRight.x);
chunk->vertices.push_back(topRight.y);
chunk->vertices.push_back(topRight.z);
chunk->vertices.push_back(normal.x);
chunk->vertices.push_back(normal.y);
chunk->vertices.push_back(normal.z);
// texcoords // texcoords
if(dim == 0){ if(dim == 0){
chunk->colors.push_back(0); mesh_data->colors.push_back(0);
chunk->colors.push_back(0); mesh_data->colors.push_back(0);
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(bottomRight.z - bottomLeft.z)); mesh_data->colors.push_back(abs(bottomRight.z - bottomLeft.z));
chunk->colors.push_back(abs(bottomRight.y - bottomLeft.y)); mesh_data->colors.push_back(abs(bottomRight.y - bottomLeft.y));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(topLeft.z - bottomLeft.z)); mesh_data->colors.push_back(abs(topLeft.z - bottomLeft.z));
chunk->colors.push_back(abs(topLeft.y - bottomLeft.y)); mesh_data->colors.push_back(abs(topLeft.y - bottomLeft.y));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(topRight.z - bottomLeft.z)); mesh_data->colors.push_back(abs(topRight.z - bottomLeft.z));
chunk->colors.push_back(abs(topRight.y - bottomLeft.y)); mesh_data->colors.push_back(abs(topRight.y - bottomLeft.y));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
}else if(dim == 1){ }else if(dim == 1){
chunk->colors.push_back(0); mesh_data->colors.push_back(0);
chunk->colors.push_back(0); mesh_data->colors.push_back(0);
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(bottomRight.z - bottomLeft.z)); mesh_data->colors.push_back(abs(bottomRight.z - bottomLeft.z));
chunk->colors.push_back(abs(bottomRight.x - bottomLeft.x)); mesh_data->colors.push_back(abs(bottomRight.x - bottomLeft.x));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(topLeft.z - bottomLeft.z)); mesh_data->colors.push_back(abs(topLeft.z - bottomLeft.z));
chunk->colors.push_back(abs(topLeft.x - bottomLeft.x)); mesh_data->colors.push_back(abs(topLeft.x - bottomLeft.x));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(topRight.z - bottomLeft.z)); mesh_data->colors.push_back(abs(topRight.z - bottomLeft.z));
chunk->colors.push_back(abs(topRight.x - bottomLeft.x)); mesh_data->colors.push_back(abs(topRight.x - bottomLeft.x));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
}else{ }else{
chunk->colors.push_back(0); mesh_data->colors.push_back(0);
chunk->colors.push_back(0); mesh_data->colors.push_back(0);
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(bottomRight.x - bottomLeft.x)); mesh_data->colors.push_back(abs(bottomRight.x - bottomLeft.x));
chunk->colors.push_back(abs(bottomRight.y - bottomLeft.y)); mesh_data->colors.push_back(abs(bottomRight.y - bottomLeft.y));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(topLeft.x - bottomLeft.x)); mesh_data->colors.push_back(abs(topLeft.x - bottomLeft.x));
chunk->colors.push_back(abs(topLeft.y - bottomLeft.y)); mesh_data->colors.push_back(abs(topLeft.y - bottomLeft.y));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
chunk->colors.push_back(abs(topRight.x - bottomLeft.x)); mesh_data->colors.push_back(abs(topRight.x - bottomLeft.x));
chunk->colors.push_back(abs(topRight.y - bottomLeft.y)); mesh_data->colors.push_back(abs(topRight.y - bottomLeft.y));
chunk->colors.push_back(((int)block) - 2); mesh_data->colors.push_back(((int)block) - 2);
} }
if (backFace) if (backFace)
{ {
chunk->indices.push_back(chunk->vIndex + 2); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 2);
chunk->indices.push_back(chunk->vIndex); mesh_data->indices.push_back(mesh_data->chunk->numVertices);
chunk->indices.push_back(chunk->vIndex + 1); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 1);
chunk->indices.push_back(chunk->vIndex + 1); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 1);
chunk->indices.push_back(chunk->vIndex + 3); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 3);
chunk->indices.push_back(chunk->vIndex + 2); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 2);
} }
else else
{ {
chunk->indices.push_back(chunk->vIndex + 2); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 2);
chunk->indices.push_back(chunk->vIndex + 3); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 3);
chunk->indices.push_back(chunk->vIndex + 1); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 1);
chunk->indices.push_back(chunk->vIndex + 1); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 1);
chunk->indices.push_back(chunk->vIndex); mesh_data->indices.push_back(mesh_data->chunk->numVertices);
chunk->indices.push_back(chunk->vIndex + 2); mesh_data->indices.push_back(mesh_data->chunk->numVertices + 2);
} }
chunk->vIndex += 4; mesh_data->chunk->numVertices += 4;
} }
}; };

View File

@ -63,9 +63,7 @@ int main()
SpaceFilling::initLUT(); SpaceFilling::initLUT();
renderer::init(); renderer::init();
chunkmanager::init(); std::thread chunkmanager_thread = chunkmanager::init();
std::thread genThread = chunkmanager::initGenThread();
std::thread meshThread = chunkmanager::initMeshThread();
while (!glfwWindowShouldClose(window)) while (!glfwWindowShouldClose(window))
{ {
@ -94,9 +92,6 @@ int main()
// Reset blockping timeout if 200ms have passed // Reset blockping timeout if 200ms have passed
if(glfwGetTime() - lastBlockPick > 0.1) blockpick = false; if(glfwGetTime() - lastBlockPick > 0.1) blockpick = false;
// ChunkManager
chunkmanager::update(deltaTime);
// Render pass // Render pass
renderer::render(); renderer::render();
@ -106,10 +101,8 @@ int main()
} }
// Stop threads and wait for them to finish // Stop threads and wait for them to finish
chunkmanager::stopGenThread(); chunkmanager::stop();
chunkmanager::stopMeshThread(); chunkmanager_thread.join();
genThread.join();
meshThread.join();
// Cleanup allocated memory // Cleanup allocated memory
chunkmanager::destroy(); chunkmanager::destroy();
@ -136,13 +129,13 @@ void processInput(GLFWwindow *window)
glfwSetWindowShouldClose(window, true); glfwSetWindowShouldClose(window, true);
if(glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_2) == GLFW_PRESS && !blockpick){ if(glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_2) == GLFW_PRESS && !blockpick){
chunkmanager::blockpick(false); //chunkmanager::blockpick(false);
blockpick=true; blockpick=true;
lastBlockPick=glfwGetTime(); lastBlockPick=glfwGetTime();
} }
if(glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_1) == GLFW_PRESS && !blockpick){ if(glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_1) == GLFW_PRESS && !blockpick){
chunkmanager::blockpick(true); //chunkmanager::blockpick(true);
blockpick=true; blockpick=true;
lastBlockPick=glfwGetTime(); lastBlockPick=glfwGetTime();
} }

View File

@ -1,16 +1,25 @@
#include "renderer.hpp" #include "renderer.hpp"
#include <oneapi/tbb/concurrent_vector.h>
#include <oneapi/tbb/concurrent_queue.h>
#include "chunkmanager.hpp" #include "chunkmanager.hpp"
#include "chunkmesher.hpp" #include "chunkmesher.hpp"
#include "globals.hpp" #include "globals.hpp"
#include "stb_image.h" #include "stb_image.h"
namespace renderer{ namespace renderer{
RenderSet chunks_torender;
oneapi::tbb::concurrent_vector<Chunk::Chunk*> render_todelete;
oneapi::tbb::concurrent_queue<chunkmesher::MeshData*> MeshDataQueue;
Shader* theShader; Shader* theShader;
GLuint chunkTexture; GLuint chunkTexture;
Shader* getRenderShader() { return theShader; } Shader* getRenderShader() { return theShader; }
RenderSet& getChunksToRender(){ return chunks_torender; }
oneapi::tbb::concurrent_queue<chunkmesher::MeshData*>& getMeshDataQueue(){ return MeshDataQueue; }
void init(){ void init(){
// Create Shader // Create Shader
@ -40,61 +49,92 @@ namespace renderer{
int total{0}, toGpu{0}; int total{0}, toGpu{0};
glm::vec4 frustumPlanes[6]; glm::vec4 frustumPlanes[6];
theCamera.getFrustumPlanes(frustumPlanes, true); theCamera.getFrustumPlanes(frustumPlanes, true);
glm::vec3 cameraPos = theCamera.getPos();
glm::vec3 cameraPos = theCamera.getPos(); glm::vec3 cameraChunkPos = cameraPos / static_cast<float>(CHUNK_SIZE);
int chunkX=static_cast<int>(cameraPos.x) / CHUNK_SIZE;
int chunkY=static_cast<int>(cameraPos.y) / CHUNK_SIZE;
int chunkZ=static_cast<int>(cameraPos.z) / CHUNK_SIZE;
theShader->use(); theShader->use();
theShader->setVec3("viewPos", cameraPos); theShader->setVec3("viewPos", cameraPos);
for(int i = 0; i < chunks_volume; i++) {
Chunk::Chunk* c = chunkmanager::getChunks().at(chunkmanager::calculateIndex(chunkmanager::getChunksIndices()[i][0] +
chunkX, chunkmanager::getChunksIndices()[i][1] + chunkY, chunkmanager::getChunksIndices()[i][2] + chunkZ));
// Frustum Culling of chunk
total++;
glm::vec3 chunk = c->getPosition(); chunkmesher::MeshData* m;
glm::vec4 chunkW = glm::vec4(chunk.x*static_cast<float>(CHUNK_SIZE), chunk.y*static_cast<float>(CHUNK_SIZE), chunk.z*static_cast<float>(CHUNK_SIZE),1.0); while(MeshDataQueue.try_pop(m)){
glm::mat4 model = glm::translate(glm::mat4(1.0), ((float)CHUNK_SIZE) * chunk); chunkmesher::sendtogpu(m);
chunkmesher::getMeshDataQueue().push(m);
}
// Check if all the corners of the chunk are outside any of the planes for(auto& c : chunks_torender){
// TODO (?) implement frustum culling as per (Inigo Quilez)[https://iquilezles.org/articles/frustumcorrect/], and check each if(! (c->getState(Chunk::CHUNK_STATE_MESHED))) continue;
// plane against each corner of the chunk
bool out=false; float dist = glm::distance(c->getPosition(), cameraChunkPos);
int a{0}; if(dist <= static_cast<float>(RENDER_DISTANCE)){
for(int p = 0; p < 6; p++){ if(!c->getState(Chunk::CHUNK_STATE_MESH_LOADED)) continue;
a = 0;
for(int i = 0; i < 8; i++) a += glm::dot(frustumPlanes[p], glm::vec4(chunkW.x + ((float)(i & 1))*CHUNK_SIZE, chunkW.y
+ ((float)((i & 2) >> 1))*CHUNK_SIZE, chunkW.z + ((float)((i & 4) >> 2))*CHUNK_SIZE, 1.0)) < 0.0;
if(a==8){ // reset out-of-vision and unload flags
out=true; c->setState(Chunk::CHUNK_STATE_OUTOFVISION, false);
break; c->setState(Chunk::CHUNK_STATE_UNLOADED, false);
// Perform frustum culling and eventually render
glm::vec3 chunk = c->getPosition();
glm::vec4 chunkW = glm::vec4(chunk.x*static_cast<float>(CHUNK_SIZE), chunk.y*static_cast<float>(CHUNK_SIZE), chunk.z*static_cast<float>(CHUNK_SIZE),1.0);
glm::mat4 model = glm::translate(glm::mat4(1.0), ((float)CHUNK_SIZE) * chunk);
// Check if all the corners of the chunk are outside any of the planes
// TODO (?) implement frustum culling as per (Inigo Quilez)[https://iquilezles.org/articles/frustumcorrect/], and check each
// plane against each corner of the chunk
bool out=false;
int a{0};
for(int p = 0; p < 6; p++){
a = 0;
for(int i = 0; i < 8; i++) a += glm::dot(frustumPlanes[p], glm::vec4(chunkW.x + ((float)(i & 1))*CHUNK_SIZE, chunkW.y
+ ((float)((i & 2) >> 1))*CHUNK_SIZE, chunkW.z + ((float)((i & 4) >> 2))*CHUNK_SIZE, 1.0)) < 0.0;
if(a==8){
out=true;
break;
}
} }
}
if (!out) if (!out)
{
toGpu++;
if(c->getState(Chunk::CHUNK_STATE_MESH_LOADED) && c->vIndex > 0)
{ {
// glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // wireframe mode if(c->numVertices > 0)
theShader->setMat4("model", model); {
theShader->setMat4("view", theCamera.getView()); // glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // wireframe mode
theShader->setMat4("projection", theCamera.getProjection()); theShader->setMat4("model", model);
theShader->setMat4("view", theCamera.getView());
theShader->setMat4("projection", theCamera.getProjection());
glBindVertexArray(c->VAO); glBindVertexArray(c->VAO);
glDrawElements(GL_TRIANGLES, c->vIndex , GL_UNSIGNED_INT, 0); glDrawElements(GL_TRIANGLES, c->numVertices , GL_UNSIGNED_INT, 0);
glBindVertexArray(0); glBindVertexArray(0);
}
} }
}else{
// When the chunk is outside render distance
if(c->getState(Chunk::CHUNK_STATE_OUTOFVISION)){
if(glfwGetTime() - c->unload_timer > UNLOAD_TIMEOUT){
// If chunk was already out and enough time has passed
// Mark the chunk to be unloaded
// And mark is to be removed from the render set
render_todelete.push_back(c);
}
} else{
// Mark has out of vision and annotate when it started
c->setState(Chunk::CHUNK_STATE_OUTOFVISION, true);
c->setState(Chunk::CHUNK_STATE_UNLOADED, false);
c->unload_timer = glfwGetTime();
}
} }
} }
//std::cout << "Chunks to mesh: " << to_mesh.size() << "\n"; for(auto& c : render_todelete){
//std::cout << "Chunks to generate: " << to_generate.size() << "\n"; // we can get away with unsafe erase as access to the container is only done by this
//std::cout << "Total chunks to draw: " << total << ". Sent to GPU: " << toGpu << "\n"; // thread
c->deleteBuffers();
chunks_torender.unsafe_erase(c);
chunkmanager::getDeleteVector().push(c);
}
render_todelete.clear();
} }
void destroy(){ void destroy(){