3DPrinters/AnetA8/Marlin/Marlin-2.0.9.3/buildroot/share/scripts/MarlinMesh.scad

305 lines
8.5 KiB
OpenSCAD

/**************************************\
* *
* OpenSCAD Mesh Display *
* by Thinkyhead - April 2017 *
* *
* Copy the grid output from Marlin, *
* paste below as shown, and use *
* OpenSCAD to see a visualization *
* of your mesh. *
* *
\**************************************/
$t = 0.15; // comment out during animation!
X = 0; Y = 1;
L = 0; R = 1; F = 2; B = 3;
//
// Sample Mesh - Replace with your own
//
measured_z = [
[ -1.20, -1.13, -1.09, -1.03, -1.19 ],
[ -1.16, -1.25, -1.27, -1.25, -1.08 ],
[ -1.13, -1.26, -1.39, -1.31, -1.18 ],
[ -1.09, -1.20, -1.26, -1.21, -1.18 ],
[ -1.13, -0.99, -1.03, -1.06, -1.32 ]
];
//
// An offset to add to all points in the mesh
//
zadjust = 0;
//
// Mesh characteristics
//
bed_size = [ 200, 200 ];
mesh_inset = [ 10, 10, 10, 10 ]; // L, F, R, B
mesh_bounds = [
[ mesh_inset[L], mesh_inset[F] ],
[ bed_size[X] - mesh_inset[R], bed_size[Y] - mesh_inset[B] ]
];
mesh_size = mesh_bounds[1] - mesh_bounds[0];
// NOTE: Marlin meshes already subtract the probe offset
NAN = 0; // Z to use for un-measured points
//
// Geometry
//
max_z_scale = 100; // Scale at Time 0.5
min_z_scale = 10; // Scale at Time 0.0 and 1.0
thickness = 0.5; // thickness of the mesh triangles
tesselation = 1; // levels of tesselation from 0-2
alternation = 2; // direction change modulus (try it)
//
// Appearance
//
show_plane = true;
show_labels = true;
show_coords = true;
arrow_length = 5;
label_font_lg = "Arial";
label_font_sm = "Arial";
mesh_color = [1,1,1,0.5];
plane_color = [0.4,0.6,0.9,0.6];
//================================================ Derive useful values
big_z = max_2D(measured_z,0);
lil_z = min_2D(measured_z,0);
mean_value = (big_z + lil_z) / 2.0;
mesh_points_y = len(measured_z);
mesh_points_x = len(measured_z[0]);
xspace = mesh_size[X] / (mesh_points_x - 1);
yspace = mesh_size[Y] / (mesh_points_y - 1);
// At $t=0 and $t=1 scale will be 100%
z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2;
//
// Min and max recursive functions for 1D and 2D arrays
// Return the smallest or largest value in the array
//
function some_1D(b,i) = (i<len(b)-1) ? (b[i] && some_1D(b,i+1)) : b[i] != 0;
function some_2D(a,j) = (j<len(a)-1) ? some_2D(a,j+1) : some_1D(a[j], 0);
function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i];
function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0);
function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i];
function max_2D(a,j) = (j<len(a)-1) ? max_2D(a,j+1) : max_1D(a[j], 0);
//
// Get the corner probe points of a grid square.
//
// Input : x,y grid indexes
// Output : An array of the 4 corner points
//
function grid_square(x,y) = [
[x * xspace, y * yspace, z_scale_factor * (measured_z[y][x] - mean_value)],
[x * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x] - mean_value)],
[(x+1) * xspace, (y+1) * yspace, z_scale_factor * (measured_z[y+1][x+1] - mean_value)],
[(x+1) * xspace, y * yspace, z_scale_factor * (measured_z[y][x+1] - mean_value)]
];
// The corner point of a grid square with Z centered on the mean
function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)];
//
// Draw the point markers and labels
//
module point_markers(show_home=true) {
// Mark the home position 0,0
if (show_home)
translate([1,1]) color([0,0,0,0.25])
cylinder(r=1, h=z_scale_factor, center=true);
for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) {
z = measured_z[y][x] - zadjust;
down = z < mean_value;
xyz = pos(x, y, z);
translate([ xyz[0], xyz[1] ]) {
// Show the XY as well as the Z!
if (show_coords) {
color("black")
translate([0,0,0.5]) {
$fn=8;
rotate([0,0]) {
posx = floor(mesh_bounds[0][X] + x * xspace);
posy = floor(mesh_bounds[0][Y] + y * yspace);
text(str(posx, ",", posy), 2, label_font_sm, halign="center", valign="center");
}
}
}
translate([ 0, 0, xyz[2] ]) {
// Label each point with the Z
v = z - mean_value;
if (show_labels) {
color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
translate([0,0,down?-10:10]) {
$fn=8;
rotate([90,0])
text(str(z), 6, label_font_lg, halign="center", valign="center");
if (v)
translate([0,0,down?-6:6]) rotate([90,0])
text(str(down || !v ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
}
}
// Show an arrow pointing up or down
if (v) {
rotate([0, down ? 180 : 0]) translate([0,0,-1])
cylinder(
r1=0.5,
r2=0.1,
h=arrow_length, $fn=12, center=1
);
}
else
color([1,0,1,0.4]) sphere(r=1.0, $fn=20, center=1);
}
}
}
}
//
// Split a square on the diagonal into
// two triangles and render them.
//
// s : a square
// alt : a flag to split on the other diagonal
//
module tesselated_square(s, alt=false) {
add = [0,0,thickness];
p1 = [
s[0], s[1], s[2], s[3],
s[0]+add, s[1]+add, s[2]+add, s[3]+add
];
f1 = alt
? [ [0,1,3], [4,5,1,0], [4,7,5], [5,7,3,1], [7,4,0,3] ]
: [ [0,1,2], [4,5,1,0], [4,6,5], [5,6,2,1], [6,4,0,2] ];
f2 = alt
? [ [1,2,3], [5,6,2,1], [5,6,7], [6,7,3,2], [7,5,1,3] ]
: [ [0,2,3], [4,6,2,0], [4,7,6], [6,7,3,2], [7,4,0,3] ];
// Use the other diagonal
polyhedron(points=p1, faces=f1);
polyhedron(points=p1, faces=f2);
}
/**
* The simplest mesh display
*/
module simple_mesh(show_plane=show_plane) {
if (show_plane) color(plane_color) cube([mesh_size[X], mesh_size[Y], thickness]);
color(mesh_color)
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2])
tesselated_square(grid_square(x, y));
}
/**
* Subdivide the mesh into smaller squares.
*/
module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) {
if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_size[X]+10, mesh_size[Y]+10, thickness]);
if (some_2D(measured_z, 0)) {
tesselation = tesselation % 4;
color(mesh_color)
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
square = grid_square(x, y);
if (tesselation < 1) {
tesselated_square(square,(x%alternation)-(y%alternation));
}
else {
subdiv_4 = subdivided_square(square);
if (tesselation < 2) {
for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
}
else {
for (i=[0:3]) {
subdiv_16 = subdivided_square(subdiv_4[i]);
if (tesselation < 3) {
for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
}
else {
for (j=[0:3]) {
subdiv_64 = subdivided_square(subdiv_16[j]);
if (tesselation < 4) {
for (k=[0:3]) tesselated_square(subdiv_64[k]);
}
}
}
}
}
}
}
}
}
//
// Subdivision helpers
//
function ctrz(a) = (a[0][2]+a[1][2]+a[3][2]+a[2][2])/4;
function avgx(a,i) = (a[i][0]+a[(i+1)%4][0])/2;
function avgy(a,i) = (a[i][1]+a[(i+1)%4][1])/2;
function avgz(a,i) = (a[i][2]+a[(i+1)%4][2])/2;
//
// Convert one square into 4, applying bilinear averaging
//
// Input : 1 square (4 points)
// Output : An array of 4 squares
//
function subdivided_square(a) = [
[ // SW square
a[0], // SW
[a[0][0],avgy(a,0),avgz(a,0)], // CW
[avgx(a,1),avgy(a,0),ctrz(a)], // CC
[avgx(a,1),a[0][1],avgz(a,3)] // SC
],
[ // NW square
[a[0][0],avgy(a,0),avgz(a,0)], // CW
a[1], // NW
[avgx(a,1),a[1][1],avgz(a,1)], // NC
[avgx(a,1),avgy(a,0),ctrz(a)] // CC
],
[ // NE square
[avgx(a,1),avgy(a,0),ctrz(a)], // CC
[avgx(a,1),a[1][1],avgz(a,1)], // NC
a[2], // NE
[a[2][0],avgy(a,0),avgz(a,2)] // CE
],
[ // SE square
[avgx(a,1),a[0][1],avgz(a,3)], // SC
[avgx(a,1),avgy(a,0),ctrz(a)], // CC
[a[2][0],avgy(a,0),avgz(a,2)], // CE
a[3] // SE
]
];
//================================================ Run the plan
translate([-mesh_size[X] / 2, -mesh_size[Y] / 2]) {
$fn = 12;
point_markers();
bilinear_mesh();
}