SPQR-Team-2019-REVAMPED/utility/OpenMV/conic_eff_h7.py

218 lines
6.7 KiB
Python
Raw Normal View History

# color tracking with conic mirror - By: EmaMaker - wed 15 jan 2020
# Based on:
# color tracking - By: paolix - ven mag 18 2018
# Automatic RGB565 Color Tracking Example
#
import sensor, image, time, pyb, math
from pyb import UART
uart = UART(3,19200, timeout_char = 1000)
START_BYTE = chr(105) #'i'
END_BYTE = chr(115) #'s'
BYTE_UNKNOWN = chr(116) #'t'
y_found = False
b_found = False
#From Arduino Documentation at: https://www.arduino.cc/reference/en/language/functions/math/map/
def val_map(x, in_min, in_max, out_min, out_max):
x = int(x)
in_min = int(in_min)
in_max = int(in_max)
out_min = int(out_min)
out_max = int(out_max)
return int((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min)
# Check side
def isInLeftSide(img, x):
return x < img.width() / 2
def isInRightSide(img, x):
return x > img.width() / 2
# LED Setup ##################################################################
red_led = pyb.LED(1)
green_led = pyb.LED(2)
blue_led = pyb.LED(3)
red_led.off()
green_led.off()
blue_led.on()
##############################################################################
thresholds = [ (55, 92, -3, 24, 60, 90), # thresholds yellow goal
(45, 61, -18, 12, -55, -21)] # thresholds blue goal (6, 31, -15, 4, -35, 0)
roi = (30, 0, 290, 240)
# Camera Setup ###############################################################
'''sensor.reset()xxxx
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False) # must be turned off for color tracking
sensor.set_auto_whitebal(False) # must be turned off for color tracking
sensor.set_auto_exposure(False, 10000) vbc
#sensor.set_backlight(1)
#sensor.set_brightness(+2 )
#sensor.set_windowing(roi)
clock = time.clock()'''
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing(roi)
2021-05-07 21:39:03 +02:00
sensor.set_contrast(3)
sensor.set_saturation(3)
sensor.set_brightness(3)
sensor.set_auto_whitebal(True)
sensor.set_auto_exposure(False, 6576)
sensor.set_auto_gain(True)
sensor.skip_frames(time = 300)
clock = time.clock()
##############################################################################
while(True):
clock.tick()
print("Exposure: " + str(sensor.get_exposure_us()) + " Gain: " + str(sensor.get_gain_db()) + "White Bal: " + str(sensor.get_rgb_gain_db()))
blue_led.off()
y_found = False
b_found = False
tt_yellow = [(0,999,0,1)] ## creo una lista di tuple per il giallo, valore x = 999 : non trovata
tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata
img = sensor.snapshot()
for blob in img.find_blobs(thresholds, pixels_threshold=40, area_threshold=50, merge = True):
img.draw_rectangle(blob.rect())
#img.draw_cross(blob.cx(), blob.cy())
if (blob.code() == 1):
tt_yellow = tt_yellow + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ]
y_found = True
if (blob.code() == 2):
tt_blue = tt_blue + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ]
b_found = True
tt_yellow.sort(key=lambda tup: tup[0]) ## ordino le liste
tt_blue.sort(key=lambda tup: tup[0]) ## ordino le liste
ny = len(tt_yellow)
nb = len(tt_blue)
#Formulas to compute position of points, considering that the H7 is rotated by a certain angle
#x = y-offset
#y = offset - x
#Compute everything related to Yellow First
y_area, y1_cx, y1_cy, y_code = tt_yellow[ny-1]
y_cx = int(y1_cy - img.height() / 2)
y_cy = int(img.width() / 2 - y1_cx)
#Normalize data between 0 and 100
if y_found == True:
img.draw_cross(y1_cx, y1_cy)
y_cx = val_map(y_cx, -img.height() / 2, img.height() / 2, 100, 0)
y_cy = val_map(y_cy, -img.width() / 2, img.width() / 2, 0, 100)
#Prepare for send as a list of characters
s_ycx = chr(y_cx)
s_ycy = chr(y_cy)
else:
y_cx = BYTE_UNKNOWN
y_cy = BYTE_UNKNOWN
#Prepare for send as a list of characters
s_ycx = y_cx
s_ycy = y_cy
#Compute everything relative to Blue
'''Given the light situation in our lab and given that blue is usually harder to spot than yellow, we need to check it we got
a blue blob that is in the same side of the ground as the yellow one, if so, discard it and check a new one
'''
b_cx = BYTE_UNKNOWN
b_cy = BYTE_UNKNOWN
#Prepare for send as a list of characters
s_bcx = b_cx
s_bcy = b_cy
if b_found == True:
for i in range(nb-1, 0,-1):
b_area, b1_cx, b1_cy, b_code = tt_blue[i]
if (not y_found) or ((isInRightSide(img, b1_cx) and isInLeftSide(img, y1_cx)) or (isInRightSide(img, y1_cx) and isInLeftSide(img, b1_cx))):
img.draw_cross(b1_cx, b1_cy)
b_cx = int(b1_cy - img.height() / 2)
b_cy = int(img.width() / 2 - b1_cx)
#print("before :" + str(b_cx) + " " + str(b_cy))
b_cx = val_map(b_cx, -img.height() / 2, img.height() / 2, 100, 0)
b_cy = val_map(b_cy, -img.width() / 2, img.width() / 2, 0, 100)
#print("after :" + str(b_cx) + " " + str(b_cy))
#Prepare for send as a list of characters
s_bcx = chr(b_cx)
s_bcy = chr(b_cy)
'''index = 1
if b_found == True:
while nb-index >= 0:
b_area, b1_cx, b1_cy, b_code = tt_blue[nb-index]
index += 1
# If the two blobs are on opposide side of the field, everything is good
if (not y_found) or ((isInRightSide(img, b1_cx) and isInLeftSide(img, y1_cx)) or (isInRightSide(img, y1_cx) and isInLeftSide(img, b1_cx))):
img.draw_cross(b1_cx, b1_cy)
b_cx = int(b1_cy - img.height() / 2)
b_cy = int(img.width() / 2 - b1_cx)
print("before :" + str(b_cx) + " " + str(b_cy))
b_cx = val_map(b_cx, -img.height() / 2, img.height() / 2, 100, 0)
b_cy = val_map(b_cy, -img.width() / 2, img.width() / 2, 0, 100)
print("after :" + str(b_cx) + " " + str(b_cy))
#Prepare for send as a list of characters
s_bcx = chr(b_cx)
s_bcy = chr(b_cy)
break
else:
b_cx = BYTE_UNKNOWN
b_cy = BYTE_UNKNOWN
#Prepare for send as a list of characters
s_bcx = b_cx
s_bcy = b_cy'''
#print(str(y_cx) + " | " + str(y_cy) + " --- " + str(b_cx) + " | " + str(b_cy))
uart.write(START_BYTE)
uart.write(s_bcx)
uart.write(s_bcy)
uart.write(s_ycx)
uart.write(s_ycy)
uart.write(END_BYTE)