124 lines
2.9 KiB
C++
124 lines
2.9 KiB
C++
|
#include "motors_movement/drivecontroller.h"
|
||
|
#include "sensors/sensors.h"
|
||
|
#include "behaviour_control/status_vector.h"
|
||
|
|
||
|
DriveController::DriveController(Motor* m1_, Motor* m2_, Motor* m3_, Motor* m4_){
|
||
|
m1 = m1_;
|
||
|
m2 = m2_;
|
||
|
m3 = m3_;
|
||
|
m4 = m4_;
|
||
|
|
||
|
for(int i = 0; i < 360; i++){
|
||
|
sins[i] = (float) sin(torad(i));
|
||
|
cosins[i] = (float) cos(torad(i));
|
||
|
}
|
||
|
|
||
|
pDir = 0;
|
||
|
pSpeed = 0;
|
||
|
pTilt = 0;
|
||
|
|
||
|
vx = 0;
|
||
|
vy = 0;
|
||
|
|
||
|
speed1 = 0;
|
||
|
speed2 = 0;
|
||
|
speed3 = 0;
|
||
|
speed4 = 0;
|
||
|
|
||
|
delta = 0;
|
||
|
input = 0;
|
||
|
output = 0;
|
||
|
setpoint = 0;
|
||
|
|
||
|
pid = new PID(&input, &output, &setpoint, KP, KI, KD, 1,DIRECT);
|
||
|
|
||
|
pid->SetSampleTime(1.5);
|
||
|
pid->setAngleWrap(true);
|
||
|
pid->SetDerivativeLag(2);
|
||
|
pid->SetOutputLimits(-255,255);
|
||
|
pid->SetMode(AUTOMATIC);
|
||
|
|
||
|
// Complementary filter for speed
|
||
|
speedFilter = new ComplementaryFilter(0.3);
|
||
|
|
||
|
canUnlock = true;
|
||
|
unlockTime = 0;
|
||
|
|
||
|
vxp = 0;
|
||
|
vxn = 0;
|
||
|
vyp = 0;
|
||
|
vyn = 0;
|
||
|
}
|
||
|
|
||
|
void DriveController::prepareDrive(int dir, int speed, int tilt){
|
||
|
pDir = dir;
|
||
|
pSpeed = speed;
|
||
|
pTilt = tilt;
|
||
|
}
|
||
|
|
||
|
void DriveController::drivePrepared(){
|
||
|
drive(pDir, pSpeed, pTilt);
|
||
|
}
|
||
|
|
||
|
float DriveController::torad(float f){
|
||
|
return (f * PI / 180.0);
|
||
|
}
|
||
|
|
||
|
void DriveController::drive(int dir, int speed, int tilt){
|
||
|
|
||
|
speed = speedFilter->calculate(speed)*GLOBAL_SPD_MULT;
|
||
|
tilt = tilt > 180 ? tilt - 360 : tilt;
|
||
|
|
||
|
vx = ((speed * cosins[dir]));
|
||
|
vy = ((-speed * sins[dir]));
|
||
|
|
||
|
if((((vy < 0 && vxn == 1) || (vy > 0 && vxp == 1) || (vx < 0 && vyp == 1) || (vx > 0 && vyn == 1)) && canUnlock) || (millis() > this->unlockTime+UNLOCK_THRESH)) {
|
||
|
vxn = 0;
|
||
|
vxp = 0;
|
||
|
vyp = 0;
|
||
|
vyn = 0;
|
||
|
}
|
||
|
|
||
|
if((vy > 0 && vxn == 1) || (vy < 0 && vxp == 1)) vy = 0;
|
||
|
if((vx > 0 && vyp == 1) || (vx < 0 && vyn == 1)) vx = 0;
|
||
|
|
||
|
speed1 = ((vx * sins[m1->angle] ) + (vy * cosins[m1->angle] ));
|
||
|
speed2 = ((vx * sins[m2->angle]) + (vy * cosins[m2->angle]));
|
||
|
speed3 = -(speed1);
|
||
|
speed4 = -(speed2);
|
||
|
|
||
|
// calcola l'errore di posizione rispetto allo 0
|
||
|
delta = CURRENT_DATA_READ.IMUAngle;
|
||
|
if(delta > 180) delta = delta - 360;
|
||
|
|
||
|
input = delta;
|
||
|
setpoint = tilt;
|
||
|
|
||
|
pid->Compute();
|
||
|
|
||
|
pidfactor = -output;
|
||
|
speed1 += pidfactor;
|
||
|
speed2 += pidfactor;
|
||
|
speed3 += pidfactor;
|
||
|
speed4 += pidfactor;
|
||
|
|
||
|
speed1 = constrain(speed1, -255, 255);
|
||
|
speed2 = constrain(speed2, -255, 255);
|
||
|
speed3 = constrain(speed3, -255, 255);
|
||
|
speed4 = constrain(speed4, -255, 255);
|
||
|
|
||
|
m1->drive((int) speed1);
|
||
|
m2->drive((int) speed2);
|
||
|
m3->drive((int) speed3);
|
||
|
m4->drive((int) speed4);
|
||
|
|
||
|
oldSpeed = speed;
|
||
|
|
||
|
CURRENT_DATA_WRITE.dir = dir;
|
||
|
CURRENT_DATA_WRITE.speed = speed;
|
||
|
CURRENT_DATA_WRITE.tilt = tilt;
|
||
|
CURRENT_DATA_WRITE.axisBlock[0] = vxp;
|
||
|
CURRENT_DATA_WRITE.axisBlock[1] = vxn;
|
||
|
CURRENT_DATA_WRITE.axisBlock[2] = vyp;
|
||
|
CURRENT_DATA_WRITE.axisBlock[3] = vyn;
|
||
|
}
|