244 lines
5.0 KiB
C
244 lines
5.0 KiB
C
|
/*
|
||
|
Inertial Measurement Unit Maths Library
|
||
|
Copyright (C) 2013-2014 Samuel Cowen
|
||
|
www.camelsoftware.com
|
||
|
|
||
|
Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com)
|
||
|
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#ifndef IMUMATH_MATRIX_HPP
|
||
|
#define IMUMATH_MATRIX_HPP
|
||
|
|
||
|
#include <string.h>
|
||
|
#include <stdint.h>
|
||
|
|
||
|
#include "vector.h"
|
||
|
|
||
|
namespace imu
|
||
|
{
|
||
|
|
||
|
|
||
|
template <uint8_t N> class Matrix
|
||
|
{
|
||
|
public:
|
||
|
Matrix()
|
||
|
{
|
||
|
memset(_cell_data, 0, N*N*sizeof(double));
|
||
|
}
|
||
|
|
||
|
Matrix(const Matrix &m)
|
||
|
{
|
||
|
for (int ij = 0; ij < N*N; ++ij)
|
||
|
{
|
||
|
_cell_data[ij] = m._cell_data[ij];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
~Matrix()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
Matrix& operator=(const Matrix& m)
|
||
|
{
|
||
|
for (int ij = 0; ij < N*N; ++ij)
|
||
|
{
|
||
|
_cell_data[ij] = m._cell_data[ij];
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Vector<N> row_to_vector(int i) const
|
||
|
{
|
||
|
Vector<N> ret;
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
ret[j] = cell(i, j);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
Vector<N> col_to_vector(int j) const
|
||
|
{
|
||
|
Vector<N> ret;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
ret[i] = cell(i, j);
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void vector_to_row(const Vector<N>& v, int i)
|
||
|
{
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
cell(i, j) = v[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void vector_to_col(const Vector<N>& v, int j)
|
||
|
{
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
cell(i, j) = v[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double operator()(int i, int j) const
|
||
|
{
|
||
|
return cell(i, j);
|
||
|
}
|
||
|
double& operator()(int i, int j)
|
||
|
{
|
||
|
return cell(i, j);
|
||
|
}
|
||
|
|
||
|
double cell(int i, int j) const
|
||
|
{
|
||
|
return _cell_data[i*N+j];
|
||
|
}
|
||
|
double& cell(int i, int j)
|
||
|
{
|
||
|
return _cell_data[i*N+j];
|
||
|
}
|
||
|
|
||
|
|
||
|
Matrix operator+(const Matrix& m) const
|
||
|
{
|
||
|
Matrix ret;
|
||
|
for (int ij = 0; ij < N*N; ++ij)
|
||
|
{
|
||
|
ret._cell_data[ij] = _cell_data[ij] + m._cell_data[ij];
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
Matrix operator-(const Matrix& m) const
|
||
|
{
|
||
|
Matrix ret;
|
||
|
for (int ij = 0; ij < N*N; ++ij)
|
||
|
{
|
||
|
ret._cell_data[ij] = _cell_data[ij] - m._cell_data[ij];
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
Matrix operator*(double scalar) const
|
||
|
{
|
||
|
Matrix ret;
|
||
|
for (int ij = 0; ij < N*N; ++ij)
|
||
|
{
|
||
|
ret._cell_data[ij] = _cell_data[ij] * scalar;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
Matrix operator*(const Matrix& m) const
|
||
|
{
|
||
|
Matrix ret;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
Vector<N> row = row_to_vector(i);
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
ret(i, j) = row.dot(m.col_to_vector(j));
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
Matrix transpose() const
|
||
|
{
|
||
|
Matrix ret;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
ret(j, i) = cell(i, j);
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
Matrix<N-1> minor_matrix(int row, int col) const
|
||
|
{
|
||
|
Matrix<N-1> ret;
|
||
|
for (int i = 0, im = 0; i < N; i++)
|
||
|
{
|
||
|
if (i == row)
|
||
|
continue;
|
||
|
|
||
|
for (int j = 0, jm = 0; j < N; j++)
|
||
|
{
|
||
|
if (j != col)
|
||
|
{
|
||
|
ret(im, jm++) = cell(i, j);
|
||
|
}
|
||
|
}
|
||
|
im++;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
double determinant() const
|
||
|
{
|
||
|
// specialization for N == 1 given below this class
|
||
|
double det = 0.0, sign = 1.0;
|
||
|
for (int i = 0; i < N; ++i, sign = -sign)
|
||
|
det += sign * cell(0, i) * minor_matrix(0, i).determinant();
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
Matrix invert() const
|
||
|
{
|
||
|
Matrix ret;
|
||
|
double det = determinant();
|
||
|
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
ret(i, j) = minor_matrix(j, i).determinant() / det;
|
||
|
if ((i+j)%2 == 1)
|
||
|
ret(i, j) = -ret(i, j);
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
double trace() const
|
||
|
{
|
||
|
double tr = 0.0;
|
||
|
for (int i = 0; i < N; ++i)
|
||
|
tr += cell(i, i);
|
||
|
return tr;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
double _cell_data[N*N];
|
||
|
};
|
||
|
|
||
|
|
||
|
template<>
|
||
|
inline double Matrix<1>::determinant() const
|
||
|
{
|
||
|
return cell(0, 0);
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
#endif
|
||
|
|