154 lines
4.9 KiB
Python
154 lines
4.9 KiB
Python
# color tracking with conic mirror - By: EmaMaker - wed 15 jan 2020
|
|
# Based on:
|
|
# color tracking - By: paolix - ven mag 18 2018
|
|
|
|
# Automatic RGB565 Color Tracking Example
|
|
#
|
|
|
|
import sensor, image, time, pyb, math
|
|
|
|
from pyb import UART
|
|
uart = UART(3,19200, timeout_char = 1000)
|
|
|
|
CHR_UNKNOWN = '999'
|
|
|
|
y_found = False
|
|
b_found = False
|
|
|
|
#From Arduino Documentation at: https://www.arduino.cc/reference/en/language/functions/math/map/
|
|
def val_map(x, in_min, in_max, out_min, out_max):
|
|
x = int(x)
|
|
in_min = int(in_min)
|
|
in_max = int(in_max)
|
|
out_min = int(out_min)
|
|
out_max = int(out_max)
|
|
return int((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min)
|
|
|
|
# Check side
|
|
def isInLeftSide(img, x):
|
|
return x < img.height() / 2
|
|
|
|
def isInRightSide(img, x):
|
|
return x >= img.height() / 2
|
|
|
|
|
|
# LED Setup ##################################################################
|
|
red_led = pyb.LED(1)
|
|
green_led = pyb.LED(2)
|
|
blue_led = pyb.LED(3)
|
|
|
|
red_led.off()
|
|
green_led.off()
|
|
blue_led.on()
|
|
##############################################################################
|
|
|
|
|
|
thresholds = [ (72, 100, -26, 12, 37, 91), # thresholds yellow goalz
|
|
(45, 70, -9, 29, -80, -42)] # thresholds blue goal (6, 31, -15, 4, -35, 0)
|
|
|
|
|
|
roi = (40, 0, 260, 240)
|
|
|
|
sensor.reset()
|
|
sensor.set_pixformat(sensor.RGB565)
|
|
sensor.set_framesize(sensor.QVGA)
|
|
sensor.set_windowing(roi)
|
|
sensor.set_contrast(3)
|
|
sensor.set_saturation(3)
|
|
sensor.set_brightness(3)
|
|
sensor.set_auto_whitebal(False, (-6.02073, -5.494869, -0.8559153))
|
|
sensor.set_auto_exposure(False, 5845)
|
|
#sensor.set_auto_gain(True)
|
|
sensor.skip_frames(time = 300)
|
|
|
|
clock = time.clock()
|
|
##############################################################################
|
|
|
|
|
|
while(True):
|
|
clock.tick()
|
|
|
|
#print("Exposure: " + str(sensor.get_exposure_us()) + " Gain: " + str(sensor.get_gain_db()) + " White Bal: " + str(sensor.get_rgb_gain_db()))
|
|
|
|
blue_led.off()
|
|
|
|
y_found = False
|
|
b_found = False
|
|
|
|
tt_yellow = [(0,999,0,1)] ## creo una lista di tuple per il giallo, valore x = 999 : non trovata
|
|
tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata
|
|
|
|
img = sensor.snapshot()
|
|
for blob in img.find_blobs(thresholds, pixels_threshold=100, area_threshold=100, merge = True):
|
|
img.draw_rectangle(blob.rect())
|
|
#img.draw_cross(blob.cx(), blob.cy())
|
|
|
|
if (blob.code() == 1):
|
|
tt_yellow = tt_yellow + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ]
|
|
y_found = True
|
|
if (blob.code() == 2):
|
|
tt_blue = tt_blue + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ]
|
|
b_found = True
|
|
|
|
tt_yellow.sort(key=lambda tup: tup[0]) ## ordino le liste
|
|
tt_blue.sort(key=lambda tup: tup[0]) ## ordino le liste
|
|
|
|
ny = len(tt_yellow)
|
|
nb = len(tt_blue)
|
|
|
|
#Compute everything related to Yellow First
|
|
y_area, y1_cx, y1_cy, y_code = tt_yellow[ny-1]
|
|
y_cx = int(y1_cx - img.width() / 2)
|
|
y_cy = int(img.height() / 2 - y1_cy)
|
|
|
|
#For simplicity's sake, normalize data between 0 and 99 (100 values in total)
|
|
if y_found == True:
|
|
img.draw_cross(y1_cx, y1_cy)
|
|
|
|
#y_cy = val_map(y_cx, -img.height() / 2, img.height() / 2, 99, 0)
|
|
#y_cx = val_map(y_cy, -img.width() / 2, img.width() / 2, 0, 99)
|
|
|
|
#compute angle
|
|
y_angle = atan2(y_cy, y_cx)
|
|
y_angle = -90 + (y_angle * 180 / 3.14) #convert to degrees and shift
|
|
y_angle = (y_angle+360)%360 #make sure it's all positive, so we don't have strange things happening when receiving on teensy's side
|
|
|
|
#compute dist
|
|
y_dist = sqrt(y_cx*y_cx + y_cy*y_cy)
|
|
|
|
data = "{}{}{}{}{}".format("Y", str(y_angle), "-", str(y_dist), "y")
|
|
# il numero 999 indica che non ho trovato nessun blob
|
|
else:
|
|
data = "{}{}{}{}{}".format("Y", "999", "-", "0", "y")
|
|
|
|
|
|
# trasmetto dati in seriale e test su terminale
|
|
uart.write(data)
|
|
|
|
|
|
b_area, b1_cx, b1_cy, b_code = tt_blue[nb-1]
|
|
b_cx = int(b1_cx - img.width() / 2)
|
|
b_cy = int(img.height() / 2 - b1_cy)
|
|
|
|
if b_found == True:
|
|
img.draw_cross(b1_cx, b1_cy)
|
|
|
|
#b_cy = val_map(b_cx, -img.height() / 2, img.height() / 2, 99, 0)
|
|
#b_cx = val_map(b_cy, -img.width() / 2, img.width() / 2, 0, 99)
|
|
|
|
#compute angle
|
|
b_angle = atan2(y_cy, y_cx) #to fix to account for camera and robot rotation
|
|
b_angle = -90 + (b_angle * 180 / 3.14) #convert to degrees and shift
|
|
b_angle = (b_angle+360)%360 #make sure it's all positive, so we don't have strange things happening when receiving on teensy's side
|
|
#compute dist
|
|
b_dist = sqrt(y_cx*y_cx + y_cy*y_cy)
|
|
|
|
data = "{}{}{}{}{}".format("B", str(b_angle), "-", str(b_dist), "b")
|
|
# il numero 999 indica che non ho trovato nessun blob
|
|
else:
|
|
data = "{}{}{}{}{}".format("B", "999", "-", "0", "b")
|
|
|
|
|
|
#BLUE FIRST, YELLOW SECOND. ANGLE FIRST, DISTANCE SECOND
|
|
print(str(s_b_angle) + " | " + str(s_b_dist) + " --- " + str(s_y_angle) + " | " + str(s_y_dist))
|