SPQR-Team1-2020/utility/OpenMV/dist_test.py

162 lines
4.7 KiB
Python

# goal dist tracking with conic mirror - By: EmaMaker - fri 21 feb 2020
# Based on:
# color tracking - By: paolix - ven mag 18 2018
# Automatic RGB565 Color Tracking Example
#
import sensor, image, time, pyb, math
from pyb import UART
uart = UART(3,19200, timeout_char = 1000)
def torad(f):
return (f*math.pi/180) % math.pi
#These measures are in centimeters
FIELD_W = 131
FIELD_H = 193
GOALS_DEPTH = 207
#Attack 1 means attacking yellow, attack 0 means attacking blue
ATTACKING = 0
# LED Setup ##################################################################
red_led = pyb.LED(1)
green_led = pyb.LED(2)
blue_led = pyb.LED(3)
red_led.off()
green_led.off()
blue_led.on()
##############################################################################
#thresholds = [ (30, 100, 15, 127, 15, 127), # generic_red_thresholds
# (30, 100, -64, -8, -32, 32), # generic_green_thresholds
# (0, 15, 0, 40, -80, -20)] # generic_blue_thresholds
#thresholds = [ (54, 93, -10, 25, 55, 70), # thresholds yellow goal
# (30, 45, 1, 40, -60, -19)] # thresholds blue goal
#
thresholds = [ (40, 100, -3, 35, 16, 96) , # thresholds yellow goal
(39, 59, -13, 12, -43, -19)] # thresholds blue goal (6, 31, -15, 4, -35, 0)
roi = (0, 6, 318, 152)
# Camera Setup ###############################################################
'''sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False) # must be turned off for color tracking
sensor.set_auto_whitebal(False) # must be turned off for color tracking
sensor.set_auto_exposure(False, 10000)
#sensor.set_backlight(1)
#sensor.set_brightness(+2)
#sensor.set_windowing(roi)
clock = time.clock()'''
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QQVGA)
sensor.set_contrast(+2)
sensor.set_saturation(2)
sensor.set_brightness(-3)
sensor.set_quality(0)
sensor.set_auto_exposure(False, 6000)
sensor.set_auto_gain(True)
sensor.skip_frames(time = 300)
clock = time.clock()
##############################################################################
# [] list
# () tupla
'''while(True):
clock.tick()
img = sensor.snapshot()'''
while(True):
clock.tick()
blue_led.off()
tt_yellow = [(0,999,0,1)] ## creo una lista di tuple per il giallo, valore x = 999 : non trovata
tt_blue = [(0,999,0,2)] ## creo una lista di tuple per il blue, valore x = 999 : non trovata
img = sensor.snapshot()
for blob in img.find_blobs(thresholds, pixels_threshold=45, area_threshold=80, merge = True):
img.draw_rectangle(blob.rect())
img.draw_cross(blob.cx(), blob.cy())
if (blob.code() == 1):
tt_yellow = tt_yellow + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ]
if (blob.code() == 2):
tt_blue = tt_blue + [ (blob.area(),blob.cx(),blob.cy(),blob.code() ) ]
tt_yellow.sort(key=lambda tup: tup[0]) ## ordino le liste
tt_blue.sort(key=lambda tup: tup[0]) ## ordino le liste
ny = len(tt_yellow)
nb = len(tt_blue)
'''Yellow'''
area,cx,cy,code = tt_yellow[ny-1]
cx = img.width() / 2 - cx
cy = img.height() / 2 - cy
yAngle = math.pi/2 - math.atan2(cy, cx)
yDist = math.sqrt(cx*cx + cy*cy)
string_yellow = "Y"+str(cx)+" | "+str(cy)+" | "+str(yAngle)+" | "+str(yDist)+str(area)+"y"
#print (string_yellow) # test on serial terminal
'''Blue'''
area,cx,cy,code = tt_blue[nb-1]
cx = img.width() / 2 - cx
cy = img.height() / 2 - cy
bAngle = math.pi/2 - math.atan2(cy, cx)
bDist = math.sqrt(cx*cx + cy*cy)
string_blue = "B"+str(cx)+" | "+str(cy)+" | |"+str(bAngle)+" | "+str(bDist)+str(area)+"b"
#print (string_blue) # test on serial terminal
#Now calculate distance and position
#Goal 1 is the one in front of the robot
#Goal 2 is the one facing the back of the robot
#convert in [0, 360), to be sure
bAngle = int(bAngle * 180 / math.pi)
yAngle = int(yAngle * 180 / math.pi)
bAngle = (bAngle + 360) % 360;
yAngle = (yAngle + 360) % 360;
#Now bring it back to [-179, 180]
if bAngle > 180:
bAngle = bAngle - 360
if yAngle > 180:
yAngle = yAngle - 360
if ATTACKING == 1:
angle1 = abs(yAngle)
angle2 = abs(bAngle - 180)
else:
angle1 = abs(bAngle)
angle2 = abs(yAngle - 180)
dist1 = (GOALS_DEPTH * math.sin(angle2) ) / (math.sin(angle1+angle2))
dist2 = (GOALS_DEPTH * math.sin(angle1) ) / (math.sin(angle1+angle2))
print("------")
print(angle1)
print(angle2)
print(dist1)
print(dist2)
print("------")
#print ("..................................")
print(clock.fps())