SPQR-Team1-2020/lib/Adafruit_BNO055/Adafruit_BNO055.cpp

700 lines
22 KiB
C++

/***************************************************************************
This is a library for the BNO055 orientation sensor
Designed specifically to work with the Adafruit BNO055 Breakout.
Pick one up today in the adafruit shop!
------> http://www.adafruit.com/products
These sensors use I2C to communicate, 2 pins are required to interface.
Adafruit invests time and resources providing this open source code,
please support Adafruit andopen-source hardware by purchasing products
from Adafruit!
Written by KTOWN for Adafruit Industries.
MIT license, all text above must be included in any redistribution
***************************************************************************/
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <math.h>
#include <limits.h>
#include "Adafruit_BNO055.h"
/***************************************************************************
CONSTRUCTOR
***************************************************************************/
/**************************************************************************/
/*!
@brief Instantiates a new Adafruit_BNO055 class
*/
/**************************************************************************/
Adafruit_BNO055::Adafruit_BNO055(int32_t sensorID, uint8_t address)
{
_sensorID = sensorID;
_address = address;
}
/***************************************************************************
PUBLIC FUNCTIONS
***************************************************************************/
/**************************************************************************/
/*!
@brief Sets up the HW
*/
/**************************************************************************/
bool Adafruit_BNO055::begin(adafruit_bno055_opmode_t mode)
{
/* Enable I2C */
Wire.begin();
// BNO055 clock stretches for 500us or more!
#ifdef ESP8266
Wire.setClockStretchLimit(1000); // Allow for 1000us of clock stretching
#endif
/* Make sure we have the right device */
uint8_t id = read8(BNO055_CHIP_ID_ADDR);
if(id != BNO055_ID)
{
delay(1000); // hold on for boot
id = read8(BNO055_CHIP_ID_ADDR);
if(id != BNO055_ID) {
return false; // still not? ok bail
}
}
/* Switch to config mode (just in case since this is the default) */
setMode(OPERATION_MODE_CONFIG);
/* Reset */
write8(BNO055_SYS_TRIGGER_ADDR, 0x20);
while (read8(BNO055_CHIP_ID_ADDR) != BNO055_ID)
{
delay(10);
}
delay(50);
/* Set to normal power mode */
write8(BNO055_PWR_MODE_ADDR, POWER_MODE_NORMAL);
delay(10);
write8(BNO055_PAGE_ID_ADDR, 0);
/* Set the output units */
/*
uint8_t unitsel = (0 << 7) | // Orientation = Android
(0 << 4) | // Temperature = Celsius
(0 << 2) | // Euler = Degrees
(1 << 1) | // Gyro = Rads
(0 << 0); // Accelerometer = m/s^2
write8(BNO055_UNIT_SEL_ADDR, unitsel);
*/
/* Configure axis mapping (see section 3.4) */
/**/
write8(BNO055_AXIS_MAP_CONFIG_ADDR, REMAP_CONFIG_P7); // P0-P7, Default is P1
delay(10);
write8(BNO055_AXIS_MAP_SIGN_ADDR, REMAP_SIGN_P7); // P0-P7, Default is P1
delay(10);
/**/
write8(BNO055_SYS_TRIGGER_ADDR, 0x0);
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(mode);
delay(20);
return true;
}
/**************************************************************************/
/*!
@brief Puts the chip in the specified operating mode
*/
/**************************************************************************/
void Adafruit_BNO055::setMode(adafruit_bno055_opmode_t mode)
{
_mode = mode;
write8(BNO055_OPR_MODE_ADDR, _mode);
delay(30);
}
/**************************************************************************/
/*!
@brief Changes the chip's axis remap
*/
/**************************************************************************/
void Adafruit_BNO055::setAxisRemap( adafruit_bno055_axis_remap_config_t remapcode )
{
adafruit_bno055_opmode_t modeback = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_AXIS_MAP_CONFIG_ADDR, remapcode);
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/**************************************************************************/
/*!
@brief Changes the chip's axis signs
*/
/**************************************************************************/
void Adafruit_BNO055::setAxisSign( adafruit_bno055_axis_remap_sign_t remapsign )
{
adafruit_bno055_opmode_t modeback = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_AXIS_MAP_SIGN_ADDR, remapsign);
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/**************************************************************************/
/*!
@brief Use the external 32.768KHz crystal
*/
/**************************************************************************/
void Adafruit_BNO055::setExtCrystalUse(boolean usextal)
{
adafruit_bno055_opmode_t modeback = _mode;
/* Switch to config mode (just in case since this is the default) */
setMode(OPERATION_MODE_CONFIG);
delay(25);
write8(BNO055_PAGE_ID_ADDR, 0);
if (usextal) {
write8(BNO055_SYS_TRIGGER_ADDR, 0x80);
} else {
write8(BNO055_SYS_TRIGGER_ADDR, 0x00);
}
delay(10);
/* Set the requested operating mode (see section 3.3) */
setMode(modeback);
delay(20);
}
/**************************************************************************/
/*!
@brief Gets the latest system status info
*/
/**************************************************************************/
void Adafruit_BNO055::getSystemStatus(uint8_t *system_status, uint8_t *self_test_result, uint8_t *system_error)
{
write8(BNO055_PAGE_ID_ADDR, 0);
/* System Status (see section 4.3.58)
---------------------------------
0 = Idle
1 = System Error
2 = Initializing Peripherals
3 = System Iniitalization
4 = Executing Self-Test
5 = Sensor fusio algorithm running
6 = System running without fusion algorithms */
if (system_status != 0)
*system_status = read8(BNO055_SYS_STAT_ADDR);
/* Self Test Results (see section )
--------------------------------
1 = test passed, 0 = test failed
Bit 0 = Accelerometer self test
Bit 1 = Magnetometer self test
Bit 2 = Gyroscope self test
Bit 3 = MCU self test
0x0F = all good! */
if (self_test_result != 0)
*self_test_result = read8(BNO055_SELFTEST_RESULT_ADDR);
/* System Error (see section 4.3.59)
---------------------------------
0 = No error
1 = Peripheral initialization error
2 = System initialization error
3 = Self test result failed
4 = Register map value out of range
5 = Register map address out of range
6 = Register map write error
7 = BNO low power mode not available for selected operat ion mode
8 = Accelerometer power mode not available
9 = Fusion algorithm configuration error
A = Sensor configuration error */
if (system_error != 0)
*system_error = read8(BNO055_SYS_ERR_ADDR);
delay(200);
}
/**************************************************************************/
/*!
@brief Gets the chip revision numbers
*/
/**************************************************************************/
void Adafruit_BNO055::getRevInfo(adafruit_bno055_rev_info_t* info)
{
uint8_t a, b;
memset(info, 0, sizeof(adafruit_bno055_rev_info_t));
/* Check the accelerometer revision */
info->accel_rev = read8(BNO055_ACCEL_REV_ID_ADDR);
/* Check the magnetometer revision */
info->mag_rev = read8(BNO055_MAG_REV_ID_ADDR);
/* Check the gyroscope revision */
info->gyro_rev = read8(BNO055_GYRO_REV_ID_ADDR);
/* Check the SW revision */
info->bl_rev = read8(BNO055_BL_REV_ID_ADDR);
a = read8(BNO055_SW_REV_ID_LSB_ADDR);
b = read8(BNO055_SW_REV_ID_MSB_ADDR);
info->sw_rev = (((uint16_t)b) << 8) | ((uint16_t)a);
}
/**************************************************************************/
/*!
@brief Gets current calibration state. Each value should be a uint8_t
pointer and it will be set to 0 if not calibrated and 3 if
fully calibrated.
*/
/**************************************************************************/
void Adafruit_BNO055::getCalibration(uint8_t* sys, uint8_t* gyro, uint8_t* accel, uint8_t* mag) {
uint8_t calData = read8(BNO055_CALIB_STAT_ADDR);
if (sys != NULL) {
*sys = (calData >> 6) & 0x03;
}
if (gyro != NULL) {
*gyro = (calData >> 4) & 0x03;
}
if (accel != NULL) {
*accel = (calData >> 2) & 0x03;
}
if (mag != NULL) {
*mag = calData & 0x03;
}
}
/**************************************************************************/
/*!
@brief Gets the temperature in degrees celsius
*/
/**************************************************************************/
int8_t Adafruit_BNO055::getTemp(void)
{
int8_t temp = (int8_t)(read8(BNO055_TEMP_ADDR));
return temp;
}
/**************************************************************************/
/*!
@brief Gets a vector reading from the specified source
*/
/**************************************************************************/
imu::Vector<3> Adafruit_BNO055::getVector(adafruit_vector_type_t vector_type)
{
imu::Vector<3> xyz;
uint8_t buffer[6];
memset (buffer, 0, 6);
int16_t x, y, z;
x = y = z = 0;
/* Read vector data (6 bytes) */
readLen((adafruit_bno055_reg_t)vector_type, buffer, 6);
x = ((int16_t)buffer[0]) | (((int16_t)buffer[1]) << 8);
y = ((int16_t)buffer[2]) | (((int16_t)buffer[3]) << 8);
z = ((int16_t)buffer[4]) | (((int16_t)buffer[5]) << 8);
/* Convert the value to an appropriate range (section 3.6.4) */
/* and assign the value to the Vector type */
switch(vector_type)
{
case VECTOR_MAGNETOMETER:
/* 1uT = 16 LSB */
xyz[0] = ((double)x)/16.0;
xyz[1] = ((double)y)/16.0;
xyz[2] = ((double)z)/16.0;
break;
case VECTOR_GYROSCOPE:
/* 1dps = 16 LSB */
xyz[0] = ((double)x)/16.0;
xyz[1] = ((double)y)/16.0;
xyz[2] = ((double)z)/16.0;
break;
case VECTOR_EULER:
/* 1 degree = 16 LSB */
xyz[0] = ((double)x)/16.0;
xyz[1] = ((double)y)/16.0;
xyz[2] = ((double)z)/16.0;
break;
case VECTOR_ACCELEROMETER:
case VECTOR_LINEARACCEL:
case VECTOR_GRAVITY:
/* 1m/s^2 = 100 LSB */
xyz[0] = ((double)x)/100.0;
xyz[1] = ((double)y)/100.0;
xyz[2] = ((double)z)/100.0;
break;
}
return xyz;
}
/**************************************************************************/
/*!
@brief Gets a quaternion reading from the specified source
*/
/**************************************************************************/
imu::Quaternion Adafruit_BNO055::getQuat(void)
{
uint8_t buffer[8];
memset (buffer, 0, 8);
int16_t x, y, z, w;
x = y = z = w = 0;
/* Read quat data (8 bytes) */
readLen(BNO055_QUATERNION_DATA_W_LSB_ADDR, buffer, 8);
w = (((uint16_t)buffer[1]) << 8) | ((uint16_t)buffer[0]);
x = (((uint16_t)buffer[3]) << 8) | ((uint16_t)buffer[2]);
y = (((uint16_t)buffer[5]) << 8) | ((uint16_t)buffer[4]);
z = (((uint16_t)buffer[7]) << 8) | ((uint16_t)buffer[6]);
/* Assign to Quaternion */
/* See http://ae-bst.resource.bosch.com/media/products/dokumente/bno055/BST_BNO055_DS000_12~1.pdf
3.6.5.5 Orientation (Quaternion) */
const double scale = (1.0 / (1<<14));
imu::Quaternion quat(scale * w, scale * x, scale * y, scale * z);
return quat;
}
/**************************************************************************/
/*!
@brief Provides the sensor_t data for this sensor
*/
/**************************************************************************/
void Adafruit_BNO055::getSensor(sensor_t *sensor)
{
/* Clear the sensor_t object */
memset(sensor, 0, sizeof(sensor_t));
/* Insert the sensor name in the fixed length char array */
strncpy (sensor->name, "BNO055", sizeof(sensor->name) - 1);
sensor->name[sizeof(sensor->name)- 1] = 0;
sensor->version = 1;
sensor->sensor_id = _sensorID;
sensor->type = SENSOR_TYPE_ORIENTATION;
sensor->min_delay = 0;
sensor->max_value = 0.0F;
sensor->min_value = 0.0F;
sensor->resolution = 0.01F;
}
/**************************************************************************/
/*!
@brief Reads the sensor and returns the data as a sensors_event_t
*/
/**************************************************************************/
bool Adafruit_BNO055::getEvent(sensors_event_t *event)
{
/* Clear the event */
memset(event, 0, sizeof(sensors_event_t));
event->version = sizeof(sensors_event_t);
event->sensor_id = _sensorID;
event->type = SENSOR_TYPE_ORIENTATION;
event->timestamp = millis();
/* Get a Euler angle sample for orientation */
imu::Vector<3> euler = getVector(Adafruit_BNO055::VECTOR_EULER);
event->orientation.x = euler.x();
event->orientation.y = euler.y();
event->orientation.z = euler.z();
return true;
}
/**************************************************************************/
/*!
@brief Reads the sensor's offset registers into a byte array
*/
/**************************************************************************/
bool Adafruit_BNO055::getSensorOffsets(uint8_t* calibData)
{
if (isFullyCalibrated())
{
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
readLen(ACCEL_OFFSET_X_LSB_ADDR, calibData, NUM_BNO055_OFFSET_REGISTERS);
setMode(lastMode);
return true;
}
return false;
}
/**************************************************************************/
/*!
@brief Reads the sensor's offset registers into an offset struct
*/
/**************************************************************************/
bool Adafruit_BNO055::getSensorOffsets(adafruit_bno055_offsets_t &offsets_type)
{
if (isFullyCalibrated())
{
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
/* Accel offset range depends on the G-range:
+/-2g = +/- 2000 mg
+/-4g = +/- 4000 mg
+/-8g = +/- 8000 mg
+/-1§g = +/- 16000 mg */
offsets_type.accel_offset_x = (read8(ACCEL_OFFSET_X_MSB_ADDR) << 8) | (read8(ACCEL_OFFSET_X_LSB_ADDR));
offsets_type.accel_offset_y = (read8(ACCEL_OFFSET_Y_MSB_ADDR) << 8) | (read8(ACCEL_OFFSET_Y_LSB_ADDR));
offsets_type.accel_offset_z = (read8(ACCEL_OFFSET_Z_MSB_ADDR) << 8) | (read8(ACCEL_OFFSET_Z_LSB_ADDR));
/* Magnetometer offset range = +/- 6400 LSB where 1uT = 16 LSB */
offsets_type.mag_offset_x = (read8(MAG_OFFSET_X_MSB_ADDR) << 8) | (read8(MAG_OFFSET_X_LSB_ADDR));
offsets_type.mag_offset_y = (read8(MAG_OFFSET_Y_MSB_ADDR) << 8) | (read8(MAG_OFFSET_Y_LSB_ADDR));
offsets_type.mag_offset_z = (read8(MAG_OFFSET_Z_MSB_ADDR) << 8) | (read8(MAG_OFFSET_Z_LSB_ADDR));
/* Gyro offset range depends on the DPS range:
2000 dps = +/- 32000 LSB
1000 dps = +/- 16000 LSB
500 dps = +/- 8000 LSB
250 dps = +/- 4000 LSB
125 dps = +/- 2000 LSB
... where 1 DPS = 16 LSB */
offsets_type.gyro_offset_x = (read8(GYRO_OFFSET_X_MSB_ADDR) << 8) | (read8(GYRO_OFFSET_X_LSB_ADDR));
offsets_type.gyro_offset_y = (read8(GYRO_OFFSET_Y_MSB_ADDR) << 8) | (read8(GYRO_OFFSET_Y_LSB_ADDR));
offsets_type.gyro_offset_z = (read8(GYRO_OFFSET_Z_MSB_ADDR) << 8) | (read8(GYRO_OFFSET_Z_LSB_ADDR));
/* Accelerometer radius = +/- 1000 LSB */
offsets_type.accel_radius = (read8(ACCEL_RADIUS_MSB_ADDR) << 8) | (read8(ACCEL_RADIUS_LSB_ADDR));
/* Magnetometer radius = +/- 960 LSB */
offsets_type.mag_radius = (read8(MAG_RADIUS_MSB_ADDR) << 8) | (read8(MAG_RADIUS_LSB_ADDR));
setMode(lastMode);
return true;
}
return false;
}
/**************************************************************************/
/*!
@brief Writes an array of calibration values to the sensor's offset registers
*/
/**************************************************************************/
void Adafruit_BNO055::setSensorOffsets(const uint8_t* calibData)
{
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
/* Note: Configuration will take place only when user writes to the last
byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.).
Therefore the last byte must be written whenever the user wants to
changes the configuration. */
/* A writeLen() would make this much cleaner */
write8(ACCEL_OFFSET_X_LSB_ADDR, calibData[0]);
write8(ACCEL_OFFSET_X_MSB_ADDR, calibData[1]);
write8(ACCEL_OFFSET_Y_LSB_ADDR, calibData[2]);
write8(ACCEL_OFFSET_Y_MSB_ADDR, calibData[3]);
write8(ACCEL_OFFSET_Z_LSB_ADDR, calibData[4]);
write8(ACCEL_OFFSET_Z_MSB_ADDR, calibData[5]);
write8(MAG_OFFSET_X_LSB_ADDR, calibData[6]);
write8(MAG_OFFSET_X_MSB_ADDR, calibData[7]);
write8(MAG_OFFSET_Y_LSB_ADDR, calibData[8]);
write8(MAG_OFFSET_Y_MSB_ADDR, calibData[9]);
write8(MAG_OFFSET_Z_LSB_ADDR, calibData[10]);
write8(MAG_OFFSET_Z_MSB_ADDR, calibData[11]);
write8(GYRO_OFFSET_X_LSB_ADDR, calibData[12]);
write8(GYRO_OFFSET_X_MSB_ADDR, calibData[13]);
write8(GYRO_OFFSET_Y_LSB_ADDR, calibData[14]);
write8(GYRO_OFFSET_Y_MSB_ADDR, calibData[15]);
write8(GYRO_OFFSET_Z_LSB_ADDR, calibData[16]);
write8(GYRO_OFFSET_Z_MSB_ADDR, calibData[17]);
write8(ACCEL_RADIUS_LSB_ADDR, calibData[18]);
write8(ACCEL_RADIUS_MSB_ADDR, calibData[19]);
write8(MAG_RADIUS_LSB_ADDR, calibData[20]);
write8(MAG_RADIUS_MSB_ADDR, calibData[21]);
setMode(lastMode);
}
/**************************************************************************/
/*!
@brief Writes to the sensor's offset registers from an offset struct
*/
/**************************************************************************/
void Adafruit_BNO055::setSensorOffsets(const adafruit_bno055_offsets_t &offsets_type)
{
adafruit_bno055_opmode_t lastMode = _mode;
setMode(OPERATION_MODE_CONFIG);
delay(25);
/* Note: Configuration will take place only when user writes to the last
byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.).
Therefore the last byte must be written whenever the user wants to
changes the configuration. */
write8(ACCEL_OFFSET_X_LSB_ADDR, (offsets_type.accel_offset_x) & 0x0FF);
write8(ACCEL_OFFSET_X_MSB_ADDR, (offsets_type.accel_offset_x >> 8) & 0x0FF);
write8(ACCEL_OFFSET_Y_LSB_ADDR, (offsets_type.accel_offset_y) & 0x0FF);
write8(ACCEL_OFFSET_Y_MSB_ADDR, (offsets_type.accel_offset_y >> 8) & 0x0FF);
write8(ACCEL_OFFSET_Z_LSB_ADDR, (offsets_type.accel_offset_z) & 0x0FF);
write8(ACCEL_OFFSET_Z_MSB_ADDR, (offsets_type.accel_offset_z >> 8) & 0x0FF);
write8(MAG_OFFSET_X_LSB_ADDR, (offsets_type.mag_offset_x) & 0x0FF);
write8(MAG_OFFSET_X_MSB_ADDR, (offsets_type.mag_offset_x >> 8) & 0x0FF);
write8(MAG_OFFSET_Y_LSB_ADDR, (offsets_type.mag_offset_y) & 0x0FF);
write8(MAG_OFFSET_Y_MSB_ADDR, (offsets_type.mag_offset_y >> 8) & 0x0FF);
write8(MAG_OFFSET_Z_LSB_ADDR, (offsets_type.mag_offset_z) & 0x0FF);
write8(MAG_OFFSET_Z_MSB_ADDR, (offsets_type.mag_offset_z >> 8) & 0x0FF);
write8(GYRO_OFFSET_X_LSB_ADDR, (offsets_type.gyro_offset_x) & 0x0FF);
write8(GYRO_OFFSET_X_MSB_ADDR, (offsets_type.gyro_offset_x >> 8) & 0x0FF);
write8(GYRO_OFFSET_Y_LSB_ADDR, (offsets_type.gyro_offset_y) & 0x0FF);
write8(GYRO_OFFSET_Y_MSB_ADDR, (offsets_type.gyro_offset_y >> 8) & 0x0FF);
write8(GYRO_OFFSET_Z_LSB_ADDR, (offsets_type.gyro_offset_z) & 0x0FF);
write8(GYRO_OFFSET_Z_MSB_ADDR, (offsets_type.gyro_offset_z >> 8) & 0x0FF);
write8(ACCEL_RADIUS_LSB_ADDR, (offsets_type.accel_radius) & 0x0FF);
write8(ACCEL_RADIUS_MSB_ADDR, (offsets_type.accel_radius >> 8) & 0x0FF);
write8(MAG_RADIUS_LSB_ADDR, (offsets_type.mag_radius) & 0x0FF);
write8(MAG_RADIUS_MSB_ADDR, (offsets_type.mag_radius >> 8) & 0x0FF);
setMode(lastMode);
}
/**************************************************************************/
/*!
@brief Checks of all cal status values are set to 3 (fully calibrated)
*/
/**************************************************************************/
bool Adafruit_BNO055::isFullyCalibrated(void)
{
uint8_t system, gyro, accel, mag;
getCalibration(&system, &gyro, &accel, &mag);
if (system < 3 || gyro < 3 || accel < 3 || mag < 3)
return false;
return true;
}
/***************************************************************************
PRIVATE FUNCTIONS
***************************************************************************/
/**************************************************************************/
/*!
@brief Writes an 8 bit value over I2C
*/
/**************************************************************************/
bool Adafruit_BNO055::write8(adafruit_bno055_reg_t reg, byte value)
{
Wire.beginTransmission(_address);
#if ARDUINO >= 100
Wire.write((uint8_t)reg);
Wire.write((uint8_t)value);
#else
Wire.send(reg);
Wire.send(value);
#endif
Wire.endTransmission();
/* ToDo: Check for error! */
return true;
}
/**************************************************************************/
/*!
@brief Reads an 8 bit value over I2C
*/
/**************************************************************************/
byte Adafruit_BNO055::read8(adafruit_bno055_reg_t reg )
{
byte value = 0;
Wire.beginTransmission(_address);
#if ARDUINO >= 100
Wire.write((uint8_t)reg);
#else
Wire.send(reg);
#endif
Wire.endTransmission();
Wire.requestFrom(_address, (byte)1);
#if ARDUINO >= 100
value = Wire.read();
#else
value = Wire.receive();
#endif
return value;
}
/**************************************************************************/
/*!
@brief Reads the specified number of bytes over I2C
*/
/**************************************************************************/
bool Adafruit_BNO055::readLen(adafruit_bno055_reg_t reg, byte * buffer, uint8_t len)
{
Wire.beginTransmission(_address);
#if ARDUINO >= 100
Wire.write((uint8_t)reg);
#else
Wire.send(reg);
#endif
Wire.endTransmission();
Wire.requestFrom(_address, (byte)len);
for (uint8_t i = 0; i < len; i++)
{
#if ARDUINO >= 100
buffer[i] = Wire.read();
#else
buffer[i] = Wire.receive();
#endif
}
/* ToDo: Check for errors! */
return true;
}