SPQR-Team1-2020/lib/Adafruit_BNO055/utility/matrix.h

244 lines
5.0 KiB
C++

/*
Inertial Measurement Unit Maths Library
Copyright (C) 2013-2014 Samuel Cowen
www.camelsoftware.com
Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef IMUMATH_MATRIX_HPP
#define IMUMATH_MATRIX_HPP
#include <string.h>
#include <stdint.h>
#include "vector.h"
namespace imu
{
template <uint8_t N> class Matrix
{
public:
Matrix()
{
memset(_cell_data, 0, N*N*sizeof(double));
}
Matrix(const Matrix &m)
{
for (int ij = 0; ij < N*N; ++ij)
{
_cell_data[ij] = m._cell_data[ij];
}
}
~Matrix()
{
}
Matrix& operator=(const Matrix& m)
{
for (int ij = 0; ij < N*N; ++ij)
{
_cell_data[ij] = m._cell_data[ij];
}
return *this;
}
Vector<N> row_to_vector(int i) const
{
Vector<N> ret;
for (int j = 0; j < N; j++)
{
ret[j] = cell(i, j);
}
return ret;
}
Vector<N> col_to_vector(int j) const
{
Vector<N> ret;
for (int i = 0; i < N; i++)
{
ret[i] = cell(i, j);
}
return ret;
}
void vector_to_row(const Vector<N>& v, int i)
{
for (int j = 0; j < N; j++)
{
cell(i, j) = v[j];
}
}
void vector_to_col(const Vector<N>& v, int j)
{
for (int i = 0; i < N; i++)
{
cell(i, j) = v[i];
}
}
double operator()(int i, int j) const
{
return cell(i, j);
}
double& operator()(int i, int j)
{
return cell(i, j);
}
double cell(int i, int j) const
{
return _cell_data[i*N+j];
}
double& cell(int i, int j)
{
return _cell_data[i*N+j];
}
Matrix operator+(const Matrix& m) const
{
Matrix ret;
for (int ij = 0; ij < N*N; ++ij)
{
ret._cell_data[ij] = _cell_data[ij] + m._cell_data[ij];
}
return ret;
}
Matrix operator-(const Matrix& m) const
{
Matrix ret;
for (int ij = 0; ij < N*N; ++ij)
{
ret._cell_data[ij] = _cell_data[ij] - m._cell_data[ij];
}
return ret;
}
Matrix operator*(double scalar) const
{
Matrix ret;
for (int ij = 0; ij < N*N; ++ij)
{
ret._cell_data[ij] = _cell_data[ij] * scalar;
}
return ret;
}
Matrix operator*(const Matrix& m) const
{
Matrix ret;
for (int i = 0; i < N; i++)
{
Vector<N> row = row_to_vector(i);
for (int j = 0; j < N; j++)
{
ret(i, j) = row.dot(m.col_to_vector(j));
}
}
return ret;
}
Matrix transpose() const
{
Matrix ret;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
ret(j, i) = cell(i, j);
}
}
return ret;
}
Matrix<N-1> minor_matrix(int row, int col) const
{
Matrix<N-1> ret;
for (int i = 0, im = 0; i < N; i++)
{
if (i == row)
continue;
for (int j = 0, jm = 0; j < N; j++)
{
if (j != col)
{
ret(im, jm++) = cell(i, j);
}
}
im++;
}
return ret;
}
double determinant() const
{
// specialization for N == 1 given below this class
double det = 0.0, sign = 1.0;
for (int i = 0; i < N; ++i, sign = -sign)
det += sign * cell(0, i) * minor_matrix(0, i).determinant();
return det;
}
Matrix invert() const
{
Matrix ret;
double det = determinant();
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
ret(i, j) = minor_matrix(j, i).determinant() / det;
if ((i+j)%2 == 1)
ret(i, j) = -ret(i, j);
}
}
return ret;
}
double trace() const
{
double tr = 0.0;
for (int i = 0; i < N; ++i)
tr += cell(i, i);
return tr;
}
private:
double _cell_data[N*N];
};
template<>
inline double Matrix<1>::determinant() const
{
return cell(0, 0);
}
};
#endif