SPQR-Team1-2020/lib/Adafruit_BNO055/utility/quaternion.h

273 lines
6.5 KiB
C++
Executable File

/*
Inertial Measurement Unit Maths Library
Copyright (C) 2013-2014 Samuel Cowen
www.camelsoftware.com
Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef IMUMATH_QUATERNION_HPP
#define IMUMATH_QUATERNION_HPP
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
#include "matrix.h"
namespace imu
{
class Quaternion
{
public:
Quaternion(): _w(1.0), _x(0.0), _y(0.0), _z(0.0) {}
Quaternion(double w, double x, double y, double z):
_w(w), _x(x), _y(y), _z(z) {}
Quaternion(double w, Vector<3> vec):
_w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {}
double& w()
{
return _w;
}
double& x()
{
return _x;
}
double& y()
{
return _y;
}
double& z()
{
return _z;
}
double w() const
{
return _w;
}
double x() const
{
return _x;
}
double y() const
{
return _y;
}
double z() const
{
return _z;
}
double magnitude() const
{
return sqrt(_w*_w + _x*_x + _y*_y + _z*_z);
}
void normalize()
{
double mag = magnitude();
*this = this->scale(1/mag);
}
Quaternion conjugate() const
{
return Quaternion(_w, -_x, -_y, -_z);
}
void fromAxisAngle(const Vector<3>& axis, double theta)
{
_w = cos(theta/2);
//only need to calculate sine of half theta once
double sht = sin(theta/2);
_x = axis.x() * sht;
_y = axis.y() * sht;
_z = axis.z() * sht;
}
void fromMatrix(const Matrix<3>& m)
{
double tr = m.trace();
double S;
if (tr > 0)
{
S = sqrt(tr+1.0) * 2;
_w = 0.25 * S;
_x = (m(2, 1) - m(1, 2)) / S;
_y = (m(0, 2) - m(2, 0)) / S;
_z = (m(1, 0) - m(0, 1)) / S;
}
else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2))
{
S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2;
_w = (m(2, 1) - m(1, 2)) / S;
_x = 0.25 * S;
_y = (m(0, 1) + m(1, 0)) / S;
_z = (m(0, 2) + m(2, 0)) / S;
}
else if (m(1, 1) > m(2, 2))
{
S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2;
_w = (m(0, 2) - m(2, 0)) / S;
_x = (m(0, 1) + m(1, 0)) / S;
_y = 0.25 * S;
_z = (m(1, 2) + m(2, 1)) / S;
}
else
{
S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2;
_w = (m(1, 0) - m(0, 1)) / S;
_x = (m(0, 2) + m(2, 0)) / S;
_y = (m(1, 2) + m(2, 1)) / S;
_z = 0.25 * S;
}
}
void toAxisAngle(Vector<3>& axis, double& angle) const
{
double sqw = sqrt(1-_w*_w);
if (sqw == 0) //it's a singularity and divide by zero, avoid
return;
angle = 2 * acos(_w);
axis.x() = _x / sqw;
axis.y() = _y / sqw;
axis.z() = _z / sqw;
}
Matrix<3> toMatrix() const
{
Matrix<3> ret;
ret.cell(0, 0) = 1 - 2*_y*_y - 2*_z*_z;
ret.cell(0, 1) = 2*_x*_y - 2*_w*_z;
ret.cell(0, 2) = 2*_x*_z + 2*_w*_y;
ret.cell(1, 0) = 2*_x*_y + 2*_w*_z;
ret.cell(1, 1) = 1 - 2*_x*_x - 2*_z*_z;
ret.cell(1, 2) = 2*_y*_z - 2*_w*_x;
ret.cell(2, 0) = 2*_x*_z - 2*_w*_y;
ret.cell(2, 1) = 2*_y*_z + 2*_w*_x;
ret.cell(2, 2) = 1 - 2*_x*_x - 2*_y*_y;
return ret;
}
// Returns euler angles that represent the quaternion. Angles are
// returned in rotation order and right-handed about the specified
// axes:
//
// v[0] is applied 1st about z (ie, roll)
// v[1] is applied 2nd about y (ie, pitch)
// v[2] is applied 3rd about x (ie, yaw)
//
// Note that this means result.x() is not a rotation about x;
// similarly for result.z().
//
Vector<3> toEuler() const
{
Vector<3> ret;
double sqw = _w*_w;
double sqx = _x*_x;
double sqy = _y*_y;
double sqz = _z*_z;
ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw));
ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw));
ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw));
return ret;
}
Vector<3> toAngularVelocity(double dt) const
{
Vector<3> ret;
Quaternion one(1.0, 0.0, 0.0, 0.0);
Quaternion delta = one - *this;
Quaternion r = (delta/dt);
r = r * 2;
r = r * one;
ret.x() = r.x();
ret.y() = r.y();
ret.z() = r.z();
return ret;
}
Vector<3> rotateVector(const Vector<2>& v) const
{
return rotateVector(Vector<3>(v.x(), v.y()));
}
Vector<3> rotateVector(const Vector<3>& v) const
{
Vector<3> qv(_x, _y, _z);
Vector<3> t = qv.cross(v) * 2.0;
return v + t*_w + qv.cross(t);
}
Quaternion operator*(const Quaternion& q) const
{
return Quaternion(
_w*q._w - _x*q._x - _y*q._y - _z*q._z,
_w*q._x + _x*q._w + _y*q._z - _z*q._y,
_w*q._y - _x*q._z + _y*q._w + _z*q._x,
_w*q._z + _x*q._y - _y*q._x + _z*q._w
);
}
Quaternion operator+(const Quaternion& q) const
{
return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z);
}
Quaternion operator-(const Quaternion& q) const
{
return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z);
}
Quaternion operator/(double scalar) const
{
return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar);
}
Quaternion operator*(double scalar) const
{
return scale(scalar);
}
Quaternion scale(double scalar) const
{
return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar);
}
private:
double _w, _x, _y, _z;
};
} // namespace
#endif