thesis/tesi_singlethread.m

142 lines
3.3 KiB
Matlab
Raw Normal View History

2024-07-30 11:29:05 +02:00
TEST = 'cardioid'
CONTROLLER = 3
2024-07-30 11:29:05 +02:00
sim_data = load(['tests/' TEST '/common.mat']);
sim_data.q0 = set_initial_conditions(sim_data.INITIAL_CONDITIONS);
[ref dref] = set_trajectory(sim_data.TRAJECTORY);
sim_data.ref = ref;
sim_data.dref = dref;
data = load(['tests/' TEST '/' num2str(CONTROLLER) '.mat']);
sim_data.PREDICTION_HORIZON = data.PREDICTION_HORIZON;
sim_data.U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
sim_data
[t, q, ref_t, U, U_track, U_corr] = simulate_discr(sim_data);
figure('Name', [TEST ' ' num2str(CONTROLLER)] );
plot_results(t,q,ref_t,U,U_track,U_corr);
%% FUNCTION DECLARATIONS
% Discrete-time simulation
function [t, q, ref_t, U, U_track, U_corr] = simulate_discr(sim_data)
tc = sim_data.tc;
steps = sim_data.tfin/tc
q = sim_data.q0';
t = 0;
[u_discr, u_track, u_corr, U_corr_history] = control_act(t, q, sim_data);
sim_data.U_corr_history = U_corr_history;
U = u_discr';
U_corr = u_corr';
U_track = u_track';
for n = 1:steps
sim_data.old_u_corr = u_corr;
sim_data.old_u_track = u_track;
sim_data.old_u = u_discr;
tspan = [(n-1)*tc n*tc];
z0 = q(end, :);
%[v, z] = ode45(@sistema_discr, tspan, z0, u_discr);
[v, z] = ode45(@(v, z) sistema_discr(v, z, u_discr), tspan, z0);
q = [q; z];
t = [t; v];
[u_discr, u_track, u_corr, U_corr_history] = control_act(t(end), q(end, :), sim_data);
sim_data.U_corr_history = U_corr_history;
U = [U; ones(length(v), 1)*u_discr'];
U_corr = [U_corr; ones(length(v), 1)*u_corr'];
U_track = [U_track; ones(length(v), 1)*u_track'];
end
ref_t = double(subs(sim_data.ref, t'))';
end
%%
% Plots
function plot_results(t, x, ref, U, U_track, U_corr)
subplot(4,2,1)
hold on
title("trajectory / state")
plot(ref(:, 1), ref(:, 2), "DisplayName", "Ref")
plot(x(:, 1), x(:, 2), "DisplayName", "state")
rectangle('Position', [x(1,1)-0.075, x(1,2)-0.075, 0.15, 0.15], 'Curvature', [1,1])
xlabel('x')
ylabel('y')
legend()
subplot(4,2,3)
plot(t, U(:, 1))
xlabel('t')
ylabel('input v')
subplot(4,2,4)
plot(t, U(:, 2))
xlabel('t')
ylabel('input w')
hold off
subplot(4,2,5)
plot(t, U_corr(:, 1))
xlabel('t')
ylabel('correction input v')
subplot(4,2,6)
plot(t, U_corr(:, 2))
xlabel('t')
ylabel('correction input w')
subplot(4,2,7)
plot(t, U_track(:, 1))
xlabel('t')
ylabel('tracking input v')
subplot(4,2,8)
plot(t, U_track(:, 2))
xlabel('t')
ylabel('tracking input w')
ex = ref(:, 1) - x(:, 1);
ey = ref(:, 2) - x(:, 2);
subplot(8,8,5)
hold on
xlabel('t')
ylabel('x')
plot(t, ref(:, 1), "DisplayName", "X_{ref}");
plot(t, x(:, 1), "DisplayName", "X");
legend()
hold off
subplot(8,8,6)
plot(t, ex);
xlabel('t')
ylabel('x error')
subplot(8,8,13)
hold on
xlabel('t')
ylabel('y')
plot(t, ref(:, 2), "DisplayName", "Y_{ref}");
plot(t, x(:, 2), "DisplayName", "Y");
legend()
hold off
subplot(8,8,14)
plot(t, ey);
xlabel('t')
ylabel('y error')
subplot(4, 4, 4);
error_norm = sqrt(ex.*ex + ey.*ey);
plot(t, error_norm );
xlabel("t")
ylabel("error norm")
end