rename state x to q
parent
44f65aed77
commit
02fdac42e3
|
@ -1,14 +1,14 @@
|
|||
function u = control_act(t, x)
|
||||
function u = control_act(t, q)
|
||||
global ref dref K b SATURATION PREDICTION_SATURATION_TOLERANCE USE_PREDICTION PREDICTION_STEPS
|
||||
|
||||
ref_s = double(subs(ref, t));
|
||||
dref_s = double(subs(dref, t));
|
||||
|
||||
|
||||
err = ref_s - feedback(x);
|
||||
err = ref_s - feedback(q);
|
||||
u_track = dref_s + K*err;
|
||||
|
||||
theta = x(3);
|
||||
theta = q(3);
|
||||
|
||||
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
|
||||
|
||||
|
@ -19,7 +19,7 @@ function u = control_act(t, x)
|
|||
% quadprog solves the problem in the form
|
||||
% min 1/2 x'Hx +f'x
|
||||
% where x is u_corr. Since u_corr is (v_corr; w_corr), and I want
|
||||
% to minimize u'u (norm squared of the function itself) H must be
|
||||
% to minimize u'u (norm squared of u_corr itself) H must be
|
||||
% the identity matrix of size 2
|
||||
H = eye(2)*2;
|
||||
% no linear of constant terms, so
|
||||
|
@ -61,9 +61,9 @@ function u = control_act(t, x)
|
|||
u = min(SATURATION, max(-SATURATION, u));
|
||||
end
|
||||
|
||||
function x_track = feedback(x)
|
||||
function q_track = feedback(q)
|
||||
global b
|
||||
x_track = [ x(1) + b*cos(x(3)); x(2) + b*sin(x(3)) ];
|
||||
q_track = [ q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
|
||||
end
|
||||
|
||||
|
||||
|
|
|
@ -25,8 +25,11 @@ switch i
|
|||
xref = 15*cos(s);
|
||||
yref = 15*sin(s);
|
||||
case 6
|
||||
xref = 5*cos(0.15*s);
|
||||
yref = 5*sin(0.15*s);
|
||||
xref = 0.4*s;
|
||||
yref = cos(0.4*s);
|
||||
case 7
|
||||
xref = 5*cos(0.05*s);
|
||||
yref = 5*sin(0.05*s);
|
||||
end
|
||||
|
||||
ref = [xref; yref];
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
function x = sistema(t, x)
|
||||
x = unicycle(t, x, control_act(t, x));
|
||||
function q = sistema(t, q)
|
||||
q = unicycle(t, q, control_act(t, q));
|
||||
end
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
function x = sistema_discr(t, x)
|
||||
function x = sistema_discr(t, q)
|
||||
global u_discr
|
||||
x = unicycle(t, x, u_discr);
|
||||
q = unicycle(t, q, u_discr);
|
||||
end
|
||||
|
|
44
tesiema.m
44
tesiema.m
|
@ -3,7 +3,7 @@ clear all
|
|||
close all
|
||||
|
||||
%% global variables
|
||||
global x0 ref dref b K SATURATION tc tfin USE_PREDICTION PREDICTION_STEP PREDICTION_SATURATION_TOLERANCE;
|
||||
global q0 ref dref b K SATURATION tc tfin USE_PREDICTION PREDICTION_STEP PREDICTION_SATURATION_TOLERANCE;
|
||||
|
||||
%% variables
|
||||
TRAJECTORY = 6
|
||||
|
@ -17,34 +17,34 @@ b = 0.2
|
|||
% proportional gain
|
||||
K = eye(2)*2
|
||||
|
||||
tfin=10
|
||||
tfin=30
|
||||
|
||||
% saturation
|
||||
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
|
||||
% Radius of wheels 10cm. Wheels distanced 15cm from each other
|
||||
% applying transformation, v
|
||||
% saturation = [1.57, 20];
|
||||
SATURATION = [1.57; 20];
|
||||
PREDICTION_SATURATION_TOLERANCE = 0.1;
|
||||
SATURATION = [1; 1];
|
||||
PREDICTION_SATURATION_TOLERANCE = 0.0;
|
||||
|
||||
%% launch simulation
|
||||
% initial state
|
||||
% In order, [x, y, theta]
|
||||
x0 = set_initial_conditions(INITIAL_CONDITIONS)
|
||||
q0 = set_initial_conditions(INITIAL_CONDITIONS)
|
||||
% trajectory to track
|
||||
[ref, dref] = set_trajectory(TRAJECTORY)
|
||||
|
||||
global tu uu
|
||||
|
||||
%figure(1)
|
||||
%USE_PREDICTION = false;
|
||||
%[t, x, ref_t, U] = simulate_discr(tfin, 0.05);
|
||||
%plot_results(t, x, ref_t, U);
|
||||
figure(1)
|
||||
USE_PREDICTION = false;
|
||||
[t, q, ref_t, U] = simulate_discr(tfin, 0.1);
|
||||
plot_results(t, q, ref_t, U);
|
||||
|
||||
figure(2)
|
||||
USE_PREDICTION = true;
|
||||
[t1, x1, ref_t1, U1] = simulate_discr(tfin, 0.05);
|
||||
plot_results(t1, x1, ref_t1, U1);
|
||||
[t1, q1, ref_t1, U1] = simulate_discr(tfin, 0.1);
|
||||
plot_results(t1, q1, ref_t1, U1);
|
||||
|
||||
figure(3)
|
||||
subplot(1, 2, 1)
|
||||
|
@ -58,26 +58,26 @@ plot(tu, uu(2, :))
|
|||
%% FUNCTION DECLARATIONS
|
||||
|
||||
% Discrete-time simulation
|
||||
function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
||||
global ref x0 u_discr
|
||||
function [t, q, ref_t, U] = simulate_discr(tfin, tc)
|
||||
global ref q0 u_discr
|
||||
|
||||
steps = tfin/tc
|
||||
|
||||
x = x0';
|
||||
q = q0';
|
||||
t = 0;
|
||||
u_discr = control_act(t, x0);
|
||||
u_discr = control_act(t, q0);
|
||||
U = u_discr';
|
||||
|
||||
for n = 1:steps
|
||||
tspan = [(n-1)*tc n*tc];
|
||||
z0 = x(end, :);
|
||||
z0 = q(end, :);
|
||||
|
||||
[v, z] = ode45(@sistema, tspan, z0);
|
||||
|
||||
x = [x; z];
|
||||
q = [q; z];
|
||||
t = [t; v];
|
||||
|
||||
u_discr = control_act(t(end), x(end, :));
|
||||
u_discr = control_act(t(end), q(end, :));
|
||||
U = [U; ones(length(v), 1)*u_discr'];
|
||||
end
|
||||
|
||||
|
@ -86,20 +86,20 @@ end
|
|||
|
||||
|
||||
% Continuos-time simulation
|
||||
function [t, x, ref, U] = simulate_cont(tfin)
|
||||
global ref x0
|
||||
function [t, q, ref, U] = simulate_cont(tfin)
|
||||
global ref q0
|
||||
|
||||
% simulation time
|
||||
tspan = linspace(0, tfin);
|
||||
% execute simulation
|
||||
[t, x] = ode45(@sistema, tspan, x0);
|
||||
[t, q] = ode45(@sistema, tspan, q0);
|
||||
|
||||
% recalc and save input at each timestep
|
||||
ts = size(t);
|
||||
rows = ts(1);
|
||||
U = zeros(rows, 2);
|
||||
for row = 1:rows
|
||||
U(row, :) = control_act(t(row), x(row, :));
|
||||
U(row, :) = control_act(t(row), q(row, :));
|
||||
end
|
||||
|
||||
% plot results
|
||||
|
|
Loading…
Reference in New Issue