correction is on untrasformed inputs, but cost and constraints are on robot inputs
parent
ceb7659bcc
commit
41f0d66851
|
@ -5,6 +5,7 @@ function [u, ut, uc, U_corr_history, q_pred] = control_act(t, q, sim_data)
|
|||
|
||||
[uc, U_corr_history, q_pred] = ucorr(t, q, sim_data);
|
||||
|
||||
uc = dc*uc;
|
||||
u = ut+uc;
|
||||
% saturation
|
||||
u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
|
||||
|
@ -28,20 +29,21 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
|
|||
if eq(pred_hor, 0)
|
||||
return
|
||||
elseif eq(pred_hor, 1)
|
||||
H = [1, 0; 0, -1];
|
||||
%H = eye(2);
|
||||
f = zeros(2,1);
|
||||
T_inv = decouple_matrix(q_act, sim_data);
|
||||
ut = utrack(t, q_act, sim_data);
|
||||
%A = [T_inv; -T_inv];
|
||||
A = [eye(2); -eye(2)];
|
||||
|
||||
H = 2 * (T_inv') * T_inv;
|
||||
%H = eye(2);
|
||||
f = zeros(2,1);
|
||||
A = [T_inv; -T_inv];
|
||||
%A = [eye(2); -eye(2)];
|
||||
|
||||
d = T_inv*ut;
|
||||
b = [s_-d;s_+d];
|
||||
|
||||
% solve qp problem
|
||||
options = optimoptions('quadprog');
|
||||
u_corr = quadprog(H, f, A, b, [],[],[],[],[],options)
|
||||
options = optimoptions('quadprog', 'Display', 'off');
|
||||
u_corr = quadprog(H, f, A, b, [],[],[],[],[],options);
|
||||
|
||||
q_pred = q_act;
|
||||
U_corr_history(:,:,1) = u_corr;
|
||||
|
@ -69,7 +71,7 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
|
|||
|
||||
T_inv = decouple_matrix(q_act, sim_data);
|
||||
% compute inputs (v, w)/(wr, wl)
|
||||
u_ = T_inv * u_track_ + u_corr_;
|
||||
u_ = T_inv * (u_track_ + u_corr_);
|
||||
|
||||
|
||||
% if needed, map (wr, wl) to (v, w) for unicicle
|
||||
|
@ -117,15 +119,23 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
|
|||
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
|
||||
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON (number of
|
||||
% vectors in u_corr times the number of elements [2] in each vector)
|
||||
A_deq = [];
|
||||
b_deq = [];
|
||||
H1 = [];
|
||||
for k=1:pred_hor
|
||||
T_inv = T_inv_pred(:,:,k);
|
||||
u_track = u_track_pred(:,:,k);
|
||||
d = T_inv*u_track;
|
||||
|
||||
H1 = blkdiag(H1, T_inv);
|
||||
H2 = blkdiag(H2, T_inv');
|
||||
A_deq = blkdiag(A_deq, [T_inv; -T_inv]);
|
||||
b_deq = [b_deq; s_ - d; s_ + d];
|
||||
end
|
||||
|
||||
A_deq = kron(eye(pred_hor), [eye(2); -eye(2)]);
|
||||
H = H1'*H1;
|
||||
|
||||
%A_deq = kron(eye(pred_hor), [eye(2); -eye(2)]);
|
||||
%A_deq
|
||||
%b_deq
|
||||
% unknowns
|
||||
|
@ -133,7 +143,7 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
|
|||
% squared norm of u_corr. H must be identity,
|
||||
% PREDICTION_HORIZON*size(u_corr)
|
||||
%H = eye(pred_hor*2)*2;
|
||||
H = kron(eye(pred_hor), [1,0;0,0]);
|
||||
%H = kron(eye(pred_hor), [1,0;0,0]);
|
||||
% no linear terms
|
||||
f = zeros(pred_hor*2, 1);
|
||||
|
||||
|
|
3
tesi.m
3
tesi.m
|
@ -24,6 +24,7 @@ for i = 1:length(TESTS)
|
|||
sim_data.(fn{1}) = test_data.(fn{1});
|
||||
end
|
||||
|
||||
sim_data.r = 0.06
|
||||
% set trajectory and starting conditions
|
||||
sim_data.q0 = set_initial_conditions(sim_data.INITIAL_CONDITIONS);
|
||||
[ref dref] = set_trajectory(sim_data.TRAJECTORY, sim_data);
|
||||
|
@ -35,7 +36,7 @@ for i = 1:length(TESTS)
|
|||
% 1: track only
|
||||
% 2: track + 1step
|
||||
% 3: track + multistep
|
||||
spmd (2)
|
||||
spmd (3)
|
||||
worker_index = spmdIndex;
|
||||
% load controller-specific options
|
||||
data = load(['tests/' num2str(worker_index) '.mat']);
|
||||
|
|
Loading…
Reference in New Issue