control_act: fix multi-step mpc
parent
58d14dcf9e
commit
67167598d9
|
@ -1,9 +1,12 @@
|
|||
function [u, ut, uc, U_corr_history] = control_act(t, q, sim_data)
|
||||
dc = decouple_matrix(q, sim_data.b);
|
||||
ut = utrack(t, q, sim_data);
|
||||
|
||||
[uc, U_corr_history] = ucorr(t, q, sim_data);
|
||||
u = dc * (ut + uc);
|
||||
|
||||
ut = dc*ut;
|
||||
uc = dc*uc;
|
||||
|
||||
u = ut+uc;
|
||||
% saturation
|
||||
u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
|
||||
end
|
||||
|
@ -14,66 +17,59 @@ function [u_corr, U_corr_history] = ucorr(t, q, sim_data)
|
|||
PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE;
|
||||
tc = sim_data.tc;
|
||||
|
||||
u_corr = zeros(2,1);
|
||||
U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
|
||||
|
||||
if eq(pred_hor, 0)
|
||||
u_corr = zeros(2,1);
|
||||
U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
|
||||
return
|
||||
end
|
||||
end
|
||||
|
||||
if pred_hor > 1
|
||||
% move the horizon over 1 step and add trailing zeroes
|
||||
U_corr_history = cat(3, sim_data.U_corr_history(:,:, 2:end), zeros(2,1));
|
||||
end
|
||||
|
||||
%disp('start of simulation')
|
||||
q_prec = q;
|
||||
q_act = q;
|
||||
q_pred=zeros(3,1, pred_hor);
|
||||
u_track_pred=zeros(2,1, pred_hor+1);
|
||||
T_inv_pred=zeros(2,2, pred_hor+1);
|
||||
u_track_pred=zeros(2,1, pred_hor);
|
||||
T_inv_pred=zeros(2,2, pred_hor);
|
||||
% for each step in the prediction horizon, integrate the system to
|
||||
% predict its future state
|
||||
|
||||
% the first step takes in q_k-1 and calculates q_new = q_k
|
||||
% this means that u_track_pred(:,:,1) will contain u_track_k-1 and will not
|
||||
% contain u_track_k+C
|
||||
for k = 1:pred_hor
|
||||
% start from the old (known) state
|
||||
|
||||
% calculate the inputs, based on the old state
|
||||
% compute the inputs, based on the old state
|
||||
|
||||
% u_corr is the prediction done at some time in the past, as found in U_corr_history
|
||||
u_corr_ = sim_data.U_corr_history(:, :, k);
|
||||
% u_track can be calculated from q
|
||||
t_ = t + tc*(k-1);
|
||||
u_track_ = utrack(t_, q_prec, sim_data);
|
||||
u_corr_ = U_corr_history(:, :, k);
|
||||
% u_track can be computed from q
|
||||
t_ = t + tc * (k-1);
|
||||
u_track_ = utrack(t_, q_act, sim_data);
|
||||
|
||||
T_inv = decouple_matrix(q_prec, sim_data.b);
|
||||
T_inv = decouple_matrix(q_act, sim_data.b);
|
||||
u_ = T_inv * (u_corr_ + u_track_);
|
||||
|
||||
% calc the state integrating with euler
|
||||
x_new = q_prec(1) + tc*u_(1) * cos(q_prec(3));
|
||||
y_new = q_prec(2) + tc*u_(1) * sin(q_prec(3));
|
||||
theta_new = q_prec(3) + tc*u_(2);
|
||||
theta_new = q_act(3) + tc*u_(2);
|
||||
% compute the state integrating with euler
|
||||
%x_new = q_act(1) + tc*u_(1) * cos(q_act(3));
|
||||
%y_new = q_act(2) + tc*u_(1) * sin(q_act(3));
|
||||
% compute the state integrating via runge-kutta
|
||||
x_new = q_act(1) + tc*u_(1) * cos(q_act(3) + 0.5*tc*u_(2));
|
||||
y_new = q_act(2) + tc*u_(1) * sin(q_act(3) + 0.5*tc*u_(2));
|
||||
|
||||
q_new = [x_new; y_new; theta_new];
|
||||
|
||||
% save history
|
||||
q_pred(:,:,k) = q_new;
|
||||
%q_pred(:,:,k) = q_new;
|
||||
u_track_pred(:,:,k) = u_track_;
|
||||
T_inv_pred(:,:,k) = T_inv;
|
||||
|
||||
% Prepare old state for next iteration
|
||||
q_prec = q_new;
|
||||
q_act = q_new;
|
||||
end
|
||||
|
||||
%disp('end of simulation')
|
||||
%q_prec
|
||||
|
||||
% calculate u_track_k+C
|
||||
u_track_pred(:,:,pred_hor+1) = utrack(t+tc*pred_hor, q_prec, sim_data);
|
||||
% remove u_track_k-1
|
||||
u_track_pred = u_track_pred(:,:,2:end);
|
||||
|
||||
T_inv_pred(:,:,pred_hor+1) = decouple_matrix(q_prec, sim_data.b);
|
||||
T_inv_pred = T_inv_pred(:,:,2:end);
|
||||
|
||||
%disp('end of patching data up')
|
||||
|
||||
%{
|
||||
Now setup the qp problem
|
||||
It needs:
|
||||
|
@ -92,12 +88,13 @@ function [u_corr, U_corr_history] = ucorr(t, q, sim_data)
|
|||
% box constrains
|
||||
% A becomes sort of block-diagonal
|
||||
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
|
||||
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON*2 (number of
|
||||
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON (number of
|
||||
% vectors in u_corr times the number of elements [2] in each vector)
|
||||
A_max_elems = pred_hor * 2 * 2;
|
||||
A_deq = [];
|
||||
b_deq = [];
|
||||
|
||||
s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE;
|
||||
for k=1:pred_hor
|
||||
T_inv = T_inv_pred(:,:,k);
|
||||
u_track = u_track_pred(:,:,k);
|
||||
|
@ -111,14 +108,13 @@ function [u_corr, U_corr_history] = ucorr(t, q, sim_data)
|
|||
A_deq = [A_deq, column];
|
||||
|
||||
d = T_inv*u_track;
|
||||
b_deq = [b_deq; SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE - d;
|
||||
SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE + d];
|
||||
b_deq = [b_deq; s_ - d; s_ + d];
|
||||
end
|
||||
|
||||
%A_deq
|
||||
%b_deq
|
||||
% unknowns
|
||||
|
||||
|
||||
% squared norm of u_corr. H must be identity,
|
||||
% PREDICTION_HORIZON*size(u_corr)
|
||||
H = eye(pred_hor*2)*2;
|
||||
|
@ -131,9 +127,11 @@ function [u_corr, U_corr_history] = ucorr(t, q, sim_data)
|
|||
|
||||
% reshape the vector of vectors to be an array, each element being
|
||||
% u_corr_j as a 2x1 vector
|
||||
% and add the prediction at t_k+C
|
||||
U_corr_history = reshape(U_corr, [2,1,pred_hor]);
|
||||
%sim_data.U_corr_history = U_corr_history;
|
||||
u_corr=sim_data.U_corr_history(:,:, 1);
|
||||
% first result is what to do now
|
||||
u_corr=U_corr_history(:,:, 1);
|
||||
|
||||
end
|
||||
|
||||
|
|
Loading…
Reference in New Issue