simulate system in discrete time
parent
35167bfed8
commit
c79a8744b2
Binary file not shown.
|
@ -1,4 +1,5 @@
|
|||
function u = control_act(t, x)
|
||||
|
||||
global ref dref K b saturation
|
||||
|
||||
ref_s = double(subs(ref, t));
|
||||
|
@ -12,7 +13,7 @@ function u = control_act(t, x)
|
|||
|
||||
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
|
||||
|
||||
u = T_inv * u_nom;
|
||||
u = T_inv * ( u_nom );
|
||||
|
||||
% saturation
|
||||
u = min(saturation, max(-saturation, u));
|
||||
|
|
|
@ -1,11 +1,3 @@
|
|||
function x = sistema(t, x)
|
||||
x = unicycle(t, x, control_act(t, x));
|
||||
end
|
||||
|
||||
function dx = unicycle(t, x, u)
|
||||
% u is (v;w)
|
||||
% x is (x; y; theta)
|
||||
theta = x(3);
|
||||
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
|
||||
dx = G_x*u;
|
||||
end
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
function x = sistema_discr(t, x)
|
||||
global u_discr
|
||||
x = unicycle(t, x, u_discr);
|
||||
end
|
160
tesiema.m
160
tesiema.m
|
@ -2,18 +2,24 @@ clc
|
|||
clear all
|
||||
close all
|
||||
|
||||
global x0 ref dref b K saturation
|
||||
global x0 ref dref b K saturation tc tfin
|
||||
|
||||
TRAJECTORY = 1
|
||||
INITIAL_CONDITIONS = 0
|
||||
TRAJECTORY = 0
|
||||
INITIAL_CONDITIONS = 1
|
||||
% distance from the center of the unicycle to the point being tracked
|
||||
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
|
||||
% minore l'errore
|
||||
b = 0.2
|
||||
% proportional gain
|
||||
K = eye(2)*2.5
|
||||
K = eye(2)*2
|
||||
|
||||
|
||||
% saturation
|
||||
saturation = [5; 0.2];
|
||||
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
|
||||
% Radius of wheels 10cm. Wheels distanced 15cm from each other
|
||||
% applying transformation, v
|
||||
% saturation = [1.57, 20];
|
||||
saturation = [1.57; 20];
|
||||
|
||||
|
||||
% initial state
|
||||
|
@ -22,64 +28,100 @@ x0 = set_initial_conditions(INITIAL_CONDITIONS)
|
|||
% trajectory to track
|
||||
[ref, dref] = set_trajectory(TRAJECTORY)
|
||||
|
||||
[t, x, ref_t, U] = simulate_discr(60, 0.1);
|
||||
plot_results(t, x, ref_t, U);
|
||||
|
||||
% simulation time
|
||||
tspan = 0:0.1:60;
|
||||
% execute simulation
|
||||
[t, x] = ode45(@sistema, tspan, x0);
|
||||
function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
||||
global ref x0 u_discr
|
||||
|
||||
% recalc and save input at each timestep
|
||||
ts = size(t);
|
||||
rows = ts(1);
|
||||
U = zeros(rows, 2);
|
||||
for row = 1:rows
|
||||
U(row, :) = control_act(t(row), x(row, :));
|
||||
steps = tfin/tc
|
||||
|
||||
x = x0';
|
||||
t = 0;
|
||||
u_discr = control_act(t, x0);
|
||||
U = u_discr';
|
||||
|
||||
|
||||
for n = 1:steps
|
||||
tspan = [(n-1)*tc n*tc];
|
||||
z0 = x(end, :);
|
||||
|
||||
[v, z] = ode45(@sistema, tspan, z0);
|
||||
|
||||
x = [x; z];
|
||||
t = [t; v];
|
||||
|
||||
u_discr = control_act(t(end, :), x(end, :));
|
||||
U = [U; ones(length(v), 1)*u_discr'];
|
||||
end
|
||||
|
||||
ref_t = double(subs(ref, t'))';
|
||||
end
|
||||
|
||||
% plot results
|
||||
ref_t = double(subs(ref, t'))';
|
||||
|
||||
subplot(2,2,1)
|
||||
hold on
|
||||
plot(ref_t(:, 1), ref_t(:, 2), "DisplayName", "Ref")
|
||||
plot(x(:, 1), x(:, 2), "DisplayName", "state")
|
||||
xlabel('x')
|
||||
ylabel('y')
|
||||
legend()
|
||||
subplot(2,2,3)
|
||||
plot(t, U(:, 1))
|
||||
xlabel('t')
|
||||
ylabel('input v')
|
||||
subplot(2,2,4)
|
||||
plot(t, U(:, 2))
|
||||
xlabel('t')
|
||||
ylabel('input w')
|
||||
function [t, x, ref, U] = simulate_cont(tfin)
|
||||
global ref x0
|
||||
|
||||
% simulation time
|
||||
tspan = linspace(0, tfin);
|
||||
% execute simulation
|
||||
[t, x] = ode45(@sistema, tspan, x0);
|
||||
|
||||
% recalc and save input at each timestep
|
||||
ts = size(t);
|
||||
rows = ts(1);
|
||||
U = zeros(rows, 2);
|
||||
for row = 1:rows
|
||||
U(row, :) = control_act(t(row), x(row, :));
|
||||
end
|
||||
|
||||
% plot results
|
||||
ref = double(subs(ref, t'))';
|
||||
end
|
||||
|
||||
subplot(4,4,3)
|
||||
hold on
|
||||
xlabel('t')
|
||||
ylabel('x')
|
||||
plot(t, ref_t(:, 1), "DisplayName", "X_{ref}");
|
||||
plot(t, x(:, 1), "DisplayName", "X");
|
||||
legend()
|
||||
hold off
|
||||
|
||||
subplot(4,4,4)
|
||||
plot(t, ref_t(:, 1) - x(:, 1));
|
||||
xlabel('t')
|
||||
ylabel('x error')
|
||||
|
||||
subplot(4,4,7)
|
||||
hold on
|
||||
xlabel('t')
|
||||
ylabel('y')
|
||||
plot(t, ref_t(:, 2), "DisplayName", "Y_{ref}");
|
||||
plot(t, x(:, 2), "DisplayName", "Y");
|
||||
legend()
|
||||
hold off
|
||||
|
||||
subplot(4,4,8)
|
||||
plot(t, ref_t(:, 2) - x(:, 2));
|
||||
xlabel('t')
|
||||
ylabel('y error')
|
||||
function plot_results(t, x, ref, U)
|
||||
subplot(2,2,1)
|
||||
hold on
|
||||
plot(ref(:, 1), ref(:, 2), "DisplayName", "Ref")
|
||||
plot(x(:, 1), x(:, 2), "DisplayName", "state")
|
||||
xlabel('x')
|
||||
ylabel('y')
|
||||
legend()
|
||||
subplot(2,2,3)
|
||||
plot(t, U(:, 1))
|
||||
xlabel('t')
|
||||
ylabel('input v')
|
||||
subplot(2,2,4)
|
||||
plot(t, U(:, 2))
|
||||
xlabel('t')
|
||||
ylabel('input w')
|
||||
|
||||
|
||||
subplot(4,4,3)
|
||||
hold on
|
||||
xlabel('t')
|
||||
ylabel('x')
|
||||
plot(t, ref(:, 1), "DisplayName", "X_{ref}");
|
||||
plot(t, x(:, 1), "DisplayName", "X");
|
||||
legend()
|
||||
hold off
|
||||
|
||||
subplot(4,4,4)
|
||||
plot(t, ref(:, 1) - x(:, 1));
|
||||
xlabel('t')
|
||||
ylabel('x error')
|
||||
|
||||
subplot(4,4,7)
|
||||
hold on
|
||||
xlabel('t')
|
||||
ylabel('y')
|
||||
plot(t, ref(:, 2), "DisplayName", "Y_{ref}");
|
||||
plot(t, x(:, 2), "DisplayName", "Y");
|
||||
legend()
|
||||
hold off
|
||||
|
||||
subplot(4,4,8)
|
||||
plot(t, ref(:, 2) - x(:, 2));
|
||||
xlabel('t')
|
||||
ylabel('y error')
|
||||
end
|
||||
|
|
|
@ -0,0 +1,7 @@
|
|||
function dx = unicycle(t, x, u)
|
||||
% u is (v;w)
|
||||
% x is (x; y; theta)
|
||||
theta = x(3);
|
||||
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
|
||||
dx = G_x*u;
|
||||
end
|
Loading…
Reference in New Issue