simulate system in discrete time

master
EmaMaker 2024-07-14 15:16:05 +02:00
parent 35167bfed8
commit c79a8744b2
6 changed files with 114 additions and 68 deletions

BIN
TMECH22.pdf Normal file

Binary file not shown.

View File

@ -1,4 +1,5 @@
function u = control_act(t, x) function u = control_act(t, x)
global ref dref K b saturation global ref dref K b saturation
ref_s = double(subs(ref, t)); ref_s = double(subs(ref, t));
@ -12,7 +13,7 @@ function u = control_act(t, x)
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b]; T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
u = T_inv * u_nom; u = T_inv * ( u_nom );
% saturation % saturation
u = min(saturation, max(-saturation, u)); u = min(saturation, max(-saturation, u));

View File

@ -1,11 +1,3 @@
function x = sistema(t, x) function x = sistema(t, x)
x = unicycle(t, x, control_act(t, x)); x = unicycle(t, x, control_act(t, x));
end end
function dx = unicycle(t, x, u)
% u is (v;w)
% x is (x; y; theta)
theta = x(3);
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
dx = G_x*u;
end

4
sistema_discr.m Normal file
View File

@ -0,0 +1,4 @@
function x = sistema_discr(t, x)
global u_discr
x = unicycle(t, x, u_discr);
end

154
tesiema.m
View File

@ -2,18 +2,24 @@ clc
clear all clear all
close all close all
global x0 ref dref b K saturation global x0 ref dref b K saturation tc tfin
TRAJECTORY = 1 TRAJECTORY = 0
INITIAL_CONDITIONS = 0 INITIAL_CONDITIONS = 1
% distance from the center of the unicycle to the point being tracked % distance from the center of the unicycle to the point being tracked
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b, % ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
% minore l'errore % minore l'errore
b = 0.2 b = 0.2
% proportional gain % proportional gain
K = eye(2)*2.5 K = eye(2)*2
% saturation % saturation
saturation = [5; 0.2]; % HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
% Radius of wheels 10cm. Wheels distanced 15cm from each other
% applying transformation, v
% saturation = [1.57, 20];
saturation = [1.57; 20];
% initial state % initial state
@ -22,64 +28,100 @@ x0 = set_initial_conditions(INITIAL_CONDITIONS)
% trajectory to track % trajectory to track
[ref, dref] = set_trajectory(TRAJECTORY) [ref, dref] = set_trajectory(TRAJECTORY)
[t, x, ref_t, U] = simulate_discr(60, 0.1);
plot_results(t, x, ref_t, U);
% simulation time function [t, x, ref_t, U] = simulate_discr(tfin, tc)
tspan = 0:0.1:60; global ref x0 u_discr
% execute simulation
[t, x] = ode45(@sistema, tspan, x0);
% recalc and save input at each timestep steps = tfin/tc
ts = size(t);
rows = ts(1); x = x0';
U = zeros(rows, 2); t = 0;
for row = 1:rows u_discr = control_act(t, x0);
U(row, :) = control_act(t(row), x(row, :)); U = u_discr';
for n = 1:steps
tspan = [(n-1)*tc n*tc];
z0 = x(end, :);
[v, z] = ode45(@sistema, tspan, z0);
x = [x; z];
t = [t; v];
u_discr = control_act(t(end, :), x(end, :));
U = [U; ones(length(v), 1)*u_discr'];
end
ref_t = double(subs(ref, t'))';
end end
% plot results
ref_t = double(subs(ref, t'))';
subplot(2,2,1) function [t, x, ref, U] = simulate_cont(tfin)
hold on global ref x0
plot(ref_t(:, 1), ref_t(:, 2), "DisplayName", "Ref")
plot(x(:, 1), x(:, 2), "DisplayName", "state") % simulation time
xlabel('x') tspan = linspace(0, tfin);
ylabel('y') % execute simulation
legend() [t, x] = ode45(@sistema, tspan, x0);
subplot(2,2,3)
plot(t, U(:, 1)) % recalc and save input at each timestep
xlabel('t') ts = size(t);
ylabel('input v') rows = ts(1);
subplot(2,2,4) U = zeros(rows, 2);
plot(t, U(:, 2)) for row = 1:rows
xlabel('t') U(row, :) = control_act(t(row), x(row, :));
ylabel('input w') end
% plot results
ref = double(subs(ref, t'))';
end
function plot_results(t, x, ref, U)
subplot(2,2,1)
hold on
plot(ref(:, 1), ref(:, 2), "DisplayName", "Ref")
plot(x(:, 1), x(:, 2), "DisplayName", "state")
xlabel('x')
ylabel('y')
legend()
subplot(2,2,3)
plot(t, U(:, 1))
xlabel('t')
ylabel('input v')
subplot(2,2,4)
plot(t, U(:, 2))
xlabel('t')
ylabel('input w')
subplot(4,4,3) subplot(4,4,3)
hold on hold on
xlabel('t') xlabel('t')
ylabel('x') ylabel('x')
plot(t, ref_t(:, 1), "DisplayName", "X_{ref}"); plot(t, ref(:, 1), "DisplayName", "X_{ref}");
plot(t, x(:, 1), "DisplayName", "X"); plot(t, x(:, 1), "DisplayName", "X");
legend() legend()
hold off hold off
subplot(4,4,4) subplot(4,4,4)
plot(t, ref_t(:, 1) - x(:, 1)); plot(t, ref(:, 1) - x(:, 1));
xlabel('t') xlabel('t')
ylabel('x error') ylabel('x error')
subplot(4,4,7) subplot(4,4,7)
hold on hold on
xlabel('t') xlabel('t')
ylabel('y') ylabel('y')
plot(t, ref_t(:, 2), "DisplayName", "Y_{ref}"); plot(t, ref(:, 2), "DisplayName", "Y_{ref}");
plot(t, x(:, 2), "DisplayName", "Y"); plot(t, x(:, 2), "DisplayName", "Y");
legend() legend()
hold off hold off
subplot(4,4,8) subplot(4,4,8)
plot(t, ref_t(:, 2) - x(:, 2)); plot(t, ref(:, 2) - x(:, 2));
xlabel('t') xlabel('t')
ylabel('y error') ylabel('y error')
end

7
unicycle.m Normal file
View File

@ -0,0 +1,7 @@
function dx = unicycle(t, x, u)
% u is (v;w)
% x is (x; y; theta)
theta = x(3);
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
dx = G_x*u;
end