Compare commits

...

2 Commits

Author SHA1 Message Date
EmaMaker cc70c4717b initial test - totally unfeasible calculation times 2024-08-06 12:43:52 +02:00
EmaMaker b9a9ed9395 a nice battery of tests 2024-08-05 18:18:22 +02:00
359 changed files with 304 additions and 116 deletions

2
.gitignore vendored
View File

@ -1,5 +1,5 @@
*.asv
tests**
tests-old**
results**
*.mlx
*.zip

View File

@ -18,21 +18,29 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
tc = sim_data.tc;
u_corr = zeros(2,1);
U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
U_corr_history = zeros(2,1);
q_act = q;
u_track_pred=zeros(2,1, pred_hor);
T_inv_pred=zeros(2,2, pred_hor);
q_pred = [];
if eq(pred_hor, 0)
return
end
U_corr_history = optimvar('ucorr', 2, pred_hor); %zeros(2,1,sim_data.PREDICTION_HORIZON);
if pred_hor > 1
% move the horizon over 1 step and add trailing zeroes
U_corr_history = cat(3, sim_data.U_corr_history(:,:, 2:end), zeros(2,1));
% prepare objective function. Sum of squared norms
obj = 0
for k = 1:pred_hor
% squared norm
obj = obj + ones(1, 2) * (U_corr_history(:, k).^2);
end
prob = optimproblem('Objective', obj);
cons = []
%if pred_hor > 1
% % move the horizon over 1 step and add trailing zeroes
% U_corr_history = cat(3, sim_data.U_corr_history(:,:, 2:end), zeros(2,1));
%end
%disp('start of simulation')
% for each step in the prediction horizon, integrate the system to
@ -44,7 +52,7 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
% compute the inputs, based on the old state
% u_corr is the prediction done at some time in the past, as found in U_corr_history
u_corr_ = U_corr_history(:, :, k);
u_corr_ = U_corr_history(:, k);
% u_track can be computed from q
t_ = t + tc * (k-1);
u_track_ = utrack(t_, q_act, sim_data);
@ -67,77 +75,34 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
q_new = [x_new; y_new; theta_new];
% save history
q_pred = [q_pred; q_new'];
u_track_pred(:,:,k) = u_track_;
T_inv_pred(:,:,k) = T_inv;
% this thing is not allowed with optimization variables, so build
% the problem while predicting the behaviour
%q_pred = [q_pred; q_new'];
%u_track_pred(:,:,k) = u_track_;
%T_inv_pred(:,:,k) = T_inv;
% Prepare old state for next iteration
q_act = q_new;
end
%{
Now setup the qp problem
It needs:
- Unknowns, u_corr at each timestep. Will be encoded as a vector of
vectors, in which every two elements is a u_j
i.e. (u_1; u_2; u_3; ...; u_C) = (v_1; w_1; v_2, w_2; v_3, w_3; ...
; v_C, w_C)
It is essential that the vector stays a column, so that u'u is the
sum of the squared norms of each u_j
% since saving history is not possible, create box constraints
% while simulating
- Box constraints: a constraint for each timestep in the horizon.
Calculated using the predicted state and inputs. They need to be
put in matrix (Ax <= b) form
%}
s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE;
d = T_inv*u_track_;
% box constrains
% A becomes sort of block-diagonal
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON (number of
% vectors in u_corr times the number of elements [2] in each vector)
A_max_elems = pred_hor * 2 * 2;
A_deq = [];
b_deq = [];
c1 = T_inv * u_corr_ <= s_-d;
c2 = -T_inv * u_corr_ <= s_ + d;
s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE;
for k=1:pred_hor
T_inv = T_inv_pred(:,:,k);
u_track = u_track_pred(:,:,k);
% [T_inv; -T_inv] is a 4x2 matrix
n_zeros_before = (k-1) * 4;
n_zeros_after = A_max_elems - n_zeros_before - 4;
zeros_before = zeros(n_zeros_before, 2);
zeros_after = zeros(n_zeros_after, 2);
column = [zeros_before; T_inv; -T_inv; zeros_after];
A_deq = [A_deq, column];
d = T_inv*u_track;
b_deq = [b_deq; s_ - d; s_ + d];
cons = [cons; c1; c2];
end
%A_deq
%b_deq
% unknowns
% squared norm of u_corr. H must be identity,
% PREDICTION_HORIZON*size(u_corr)
H = eye(pred_hor*2)*2;
% no linear terms
f = zeros(pred_hor*2, 1);
% solve qp problem
options = optimoptions('quadprog', 'Display', 'off');
U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
% reshape the vector of vectors to be an array, each element being
% u_corr_j as a 2x1 vector
% and add the prediction at t_k+C
U_corr_history = reshape(U_corr, [2,1,pred_hor]);
%sim_data.U_corr_history = U_corr_history;
% first result is what to do now
u_corr=U_corr_history(:,:, 1);
prob.Constraints.cons = cons;
x0.ucorr = zeros(2,1,pred_hor);
show(prob)
[sol,fval,exitflag,output] = solve(prob,x0)
U_corr_history=reshape(sol.ucorr, [2,1,pred_hor]);
u_corr=U_corr_history(:,:,1);
end
function u_track = utrack(t, q, sim_data)

Some files were not shown because too many files have changed in this diff Show More