Compare commits
3 Commits
master-cos
...
master
Author | SHA1 | Date |
---|---|---|
EmaMaker | 2408bdf472 | |
EmaMaker | db2f6f1241 | |
EmaMaker | ace9febb52 |
|
@ -1,11 +1,12 @@
|
|||
function [u, ut, uc, U_corr_history, q_pred] = control_act(t, q, sim_data)
|
||||
dc = decouple_matrix(q, sim_data);
|
||||
ut = utrack(t, q, sim_data);
|
||||
ut = dc*ut;
|
||||
|
||||
[uc, U_corr_history, q_pred] = ucorr(t, q, sim_data);
|
||||
|
||||
uc = dc*uc;
|
||||
|
||||
ut = dc*ut;
|
||||
%uc = dc*uc;
|
||||
%uc = zeros(2,1);
|
||||
|
||||
u = ut+uc;
|
||||
% saturation
|
||||
u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
|
||||
|
@ -29,47 +30,19 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
|
|||
if eq(pred_hor, 0)
|
||||
return
|
||||
elseif eq(pred_hor, 1)
|
||||
H = eye(2);
|
||||
f = zeros(2,1);
|
||||
T_inv = decouple_matrix(q_act, sim_data);
|
||||
ut = utrack(t, q_act, sim_data);
|
||||
|
||||
if eq(sim_data.costfun,1)
|
||||
% minimize v, unicycle and ddr
|
||||
% actually minimize xdot^2 + ydot^2 = v
|
||||
H = 2*eye(2);
|
||||
elseif eq(sim_data.costfun,2)
|
||||
% minimize vcorr^2 + wcorr^2, unicycle and ddr
|
||||
H = T_inv;
|
||||
end
|
||||
if eq(sim_data.robot, 0)
|
||||
if eq(sim_data.costfun, 3)
|
||||
% ex3: unicycle, minimize v
|
||||
H = T_inv' * [1 0; 0 0] * T_inv;
|
||||
elseif eq(sim_data.costfun, 4)
|
||||
% ex4: unicycle, minimize w
|
||||
H = T_inv' * [0 0; 0 1] * T_inv;
|
||||
end
|
||||
else
|
||||
if eq(sim_data.costfun, 3)
|
||||
% ex1: ddr, minimize v. det(H) = 0 H not symmetric
|
||||
R = [sim_data.r/2 sim_data.r/2]
|
||||
H = T_inv' * R' * R * T_inv;
|
||||
elseif eq(sim_data.costfun, 4)
|
||||
% ex2: ddr, minimize w. det(H) = 0
|
||||
R = [sim_data.r/sim_data.d -sim_data.r/sim_data.d]
|
||||
H = T_inv' * R' * R * T_inv;
|
||||
end
|
||||
end
|
||||
|
||||
f = zeros(2,1);
|
||||
A = [T_inv; -T_inv];
|
||||
%A = [eye(2); -eye(2)];
|
||||
%A = [T_inv; -T_inv];
|
||||
A = [eye(2); -eye(2)];
|
||||
|
||||
d = T_inv*ut;
|
||||
b = [s_-d;s_+d];
|
||||
|
||||
% solve qp problem
|
||||
options = optimoptions('quadprog', 'Display', 'off', 'Algorithm', 'active-set');
|
||||
u_corr = quadprog(H, f, A, b, [],[],[],[],zeros(2,1),options);
|
||||
options = optimoptions('quadprog', 'Display', 'off');
|
||||
u_corr = quadprog(H, f, A, b, [],[],[],[],[],options);
|
||||
|
||||
q_pred = q_act;
|
||||
U_corr_history(:,:,1) = u_corr;
|
||||
|
@ -97,7 +70,7 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
|
|||
|
||||
T_inv = decouple_matrix(q_act, sim_data);
|
||||
% compute inputs (v, w)/(wr, wl)
|
||||
u_ = T_inv * (u_track_ + u_corr_);
|
||||
u_ = T_inv * u_track_ + u_corr_;
|
||||
|
||||
|
||||
% if needed, map (wr, wl) to (v, w) for unicicle
|
||||
|
@ -145,65 +118,28 @@ function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
|
|||
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
|
||||
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON (number of
|
||||
% vectors in u_corr times the number of elements [2] in each vector)
|
||||
A_deq = [];
|
||||
b_deq = [];
|
||||
H = [];
|
||||
for k=1:pred_hor
|
||||
T_inv = T_inv_pred(:,:,k);
|
||||
u_track = u_track_pred(:,:,k);
|
||||
d = T_inv*u_track;
|
||||
|
||||
A_deq = blkdiag(A_deq, [T_inv; -T_inv]);
|
||||
b_deq = [b_deq; s_ - d; s_ + d];
|
||||
|
||||
|
||||
if eq(sim_data.costfun,1)
|
||||
% minimize v, unicycle and ddr
|
||||
% actually minimize xdot^2 + ydot^2 = v
|
||||
H = blkdiag(H, 2*eye(2));
|
||||
elseif eq(sim_data.costfun,2)
|
||||
% minimize vcorr^2 + wcorr^2, unicycle and ddr
|
||||
H = blkdiag(H, T_inv);
|
||||
H = kron(eye(pred_hor), T_inv(:, :, :));
|
||||
end
|
||||
if eq(sim_data.robot, 0)
|
||||
if eq(sim_data.costfun, 3)
|
||||
% ex3: unicycle, minimize v
|
||||
H = blkdiag(H, T_inv' * [1 0; 0 0] * T_inv);
|
||||
elseif eq(sim_data.costfun, 4)
|
||||
% ex4: unicycle, minimize w
|
||||
H = blkdiag(H, T_inv' * [0 0; 0 1] * T_inv);
|
||||
end
|
||||
else
|
||||
if eq(sim_data.costfun, 3)
|
||||
% ex1: ddr, minimize v. det(H) = 0 H not symmetric
|
||||
R = [sim_data.r/2 sim_data.r/2];
|
||||
H = blkdiag(H, T_inv' * (R') * R * T_inv);
|
||||
elseif eq(sim_data.costfun, 4)
|
||||
% ex2: ddr, minimize w. det(H) = 0
|
||||
R = [sim_data.r/sim_data.d -sim_data.r/sim_data.d];
|
||||
H = blkdiag(H, T_inv' * (R') * R * T_inv);
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
%A_deq = kron(eye(pred_hor), [eye(2); -eye(2)]);
|
||||
A_deq = kron(eye(pred_hor), [eye(2); -eye(2)]);
|
||||
%A_deq
|
||||
%b_deq
|
||||
% unknowns
|
||||
|
||||
% squared norm of u_corr. H must be identity,
|
||||
% PREDICTION_HORIZON*size(u_corr)
|
||||
%H = eye(pred_hor*2)*2;
|
||||
%H = kron(eye(pred_hor), 2*ones(2,2));
|
||||
H = eye(pred_hor*2)*2;
|
||||
% no linear terms
|
||||
f = zeros(pred_hor*2, 1);
|
||||
|
||||
|
||||
|
||||
% solve qp problem
|
||||
options = optimoptions('quadprog', 'Display', 'off', 'Algorithm', 'active-set');
|
||||
U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],zeros(2*pred_hor, 1),options);
|
||||
options = optimoptions('quadprog', 'Display', 'off');
|
||||
U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
|
||||
%U_corr = lsqnonlin(@(pred_hor) ones(pred_hor, 1), U_corr_history(:,:,1), [], [], A_deq, b_deq, [], []);
|
||||
|
||||
% reshape the vector of vectors to be an array, each element being
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
clc
|
||||
clear all
|
||||
close allQQQ
|
||||
close all
|
||||
|
||||
%load('results-diffdrive/circle/start_center/10-09-2024 13-27-12/workspace_composite.mat')
|
||||
load('results-diffdrive/circle/start_center/10-09-2024 15-33-08/workspace_composite.mat')
|
||||
%load('results-diffdrive/circle/start_center/10-09-2024 15-33-08/workspace_composite.mat')
|
||||
%load('/home/emamaker/documents/Università/tesi/tesi-sim/results-diffdrive/square/10-09-2024 13-53-35/workspace_composite.mat')
|
||||
|
||||
load('results-diffdrive/figure8/toofast/10-09-2024-22-35-17/workspace_composite.mat')
|
||||
|
||||
|
||||
|
||||
y = cell(1,3);
|
||||
|
|
21
plot_all.m
21
plot_all.m
|
@ -8,8 +8,25 @@ disp('Photos will start in 3s')
|
|||
pause(3)
|
||||
|
||||
PLOT_TESTS = [
|
||||
"results-diffdrive-costfun-ddronly/circle/start_center/ddr-minv-activeset";
|
||||
"results-diffdrive-costfun-ddronly/circle/start_center/ddr-minw-activeset";
|
||||
"results-diffdrive/straightline/chill/11-09-2024-16-57-01";
|
||||
"results-diffdrive/straightline/chill_errortheta_pisixths/11-09-2024-16-57-43";
|
||||
"results-diffdrive/straightline/chill_errory/11-09-2024-16-59-04";
|
||||
"results-diffdrive/straightline/toofast/11-09-2024-16-58-24";
|
||||
"results-diffdrive/circle/start_center/11-09-2024-16-59-50";
|
||||
"results-diffdrive/square/11-09-2024-17-06-14";
|
||||
"results-diffdrive/figure8/chill/11-09-2024-17-00-53";
|
||||
%"results-diffdrive/figure8/fancyreps/11-09-2024--45-28";
|
||||
"results-diffdrive/figure8/toofast/11-09-2024-17-01-43";
|
||||
|
||||
"results-unicycle/straightline/chill/11-09-2024-17-07-51";
|
||||
"results-unicycle/straightline/chill_errortheta_pisixths/11-09-2024-17-08-35";
|
||||
"results-unicycle/straightline/chill_errory/11-09-2024-17-10-00";
|
||||
"results-unicycle/straightline/toofast/11-09-2024-17-09-18";
|
||||
"results-unicycle/circle/start_center/11-09-2024-17-10-48";
|
||||
"results-unicycle/square/11-09-2024-17-17-21";
|
||||
"results-unicycle/figure8/chill/11-09-2024-17-11-53";
|
||||
%"results-unicycle/figure8/fancyreps/11-09-2024--45-28";
|
||||
"results-unicycle/figure8/toofast/11-09-2024-17-12-45";
|
||||
]
|
||||
|
||||
s_ = size(PLOT_TESTS)
|
||||
|
|
10
tesi.m
10
tesi.m
|
@ -4,11 +4,10 @@ close all
|
|||
|
||||
% options
|
||||
ROBOT = 'unicycle'
|
||||
%TESTS = ["straightline/chill", "straightline/chill_errortheta_pisixths", "straightline/toofast", "straightline/chill_errory", "circle/start_center", "figure8/chill", "figure8/toofast", "square"]
|
||||
TESTS = ["circle/start_center"]
|
||||
TESTS = ["straightline/chill", "straightline/chill_errortheta_pisixths", "straightline/toofast", "straightline/chill_errory", "circle/start_center", "figure8/chill", "figure8/toofast", "square"]
|
||||
%TESTS = ["circle/start_center"]
|
||||
|
||||
% main
|
||||
|
||||
s_ = size(TESTS);
|
||||
for i = 1:length(TESTS)
|
||||
clearvars -except i s_ TESTS ROBOT
|
||||
|
@ -30,9 +29,6 @@ for i = 1:length(TESTS)
|
|||
[ref dref] = set_trajectory(sim_data.TRAJECTORY, sim_data);
|
||||
sim_data.ref = ref;
|
||||
sim_data.dref = dref;
|
||||
%sim_data.tfin = 15;
|
||||
sim_data.costfun=4
|
||||
sim_data.tc=0.05
|
||||
|
||||
% spawn a new worker for each controller
|
||||
% 1: track only
|
||||
|
@ -68,7 +64,7 @@ for i = 1:length(TESTS)
|
|||
|
||||
% save simulation data
|
||||
f1 = [ TEST '/' char(datetime, 'dd-MM-yyyy-HH-mm-ss')]; % windows compatible name
|
||||
f = ['results-' ROBOT '-costfun/' f1];
|
||||
f = ['results-' ROBOT '/' f1];
|
||||
mkdir(f)
|
||||
% save workspace
|
||||
dsave([f '/workspace_composite.mat']);
|
||||
|
|
130
tesi_st.m
130
tesi_st.m
|
@ -1,130 +0,0 @@
|
|||
clc
|
||||
clear all
|
||||
close all
|
||||
|
||||
% options
|
||||
ROBOT = 'unicycle'
|
||||
%TESTS = ["straightline/chill", "straightline/chill_errortheta_pisixths", "straightline/toofast", "straightline/chill_errory", "circle/start_center", "figure8/chill", "figure8/toofast", "square"]
|
||||
TESTS = ["figure8/chill"]
|
||||
CONTROLLER = 3
|
||||
|
||||
% main
|
||||
s_ = size(TESTS);
|
||||
for i = 1:length(TESTS)
|
||||
clearvars -except i s_ TESTS ROBOT CONTROLLER
|
||||
close all
|
||||
|
||||
% load simulation parameters common to all robots and all tests
|
||||
sim_data = load(["tests/robot_common.mat"]);
|
||||
|
||||
TEST = convertStringsToChars(TESTS(i))
|
||||
|
||||
% load test data (trajectory, etc)
|
||||
test_data = load(['tests/' TEST '/common.mat']);
|
||||
for fn = fieldnames(test_data)'
|
||||
sim_data.(fn{1}) = test_data.(fn{1});
|
||||
end
|
||||
|
||||
% set trajectory and starting conditions
|
||||
sim_data.q0 = set_initial_conditions(sim_data.INITIAL_CONDITIONS);
|
||||
[ref dref] = set_trajectory(sim_data.TRAJECTORY, sim_data);
|
||||
sim_data.ref = ref;
|
||||
sim_data.dref = dref;
|
||||
|
||||
% spawn a new worker for each contzroller
|
||||
% 1: track only
|
||||
% 2: track + 1step
|
||||
% 3: track + multistep
|
||||
% load controller-specific options
|
||||
data = load(['tests/' num2str(CONTROLLER) '.mat']);
|
||||
for fn = fieldnames(data)'
|
||||
sim_data.(fn{1}) = data.(fn{1});
|
||||
end
|
||||
|
||||
% load robot-specific options
|
||||
% put here to overwrite any parameter value left over in the tests
|
||||
% .mat files, just in case
|
||||
data = load(['tests/' ROBOT '.mat']);
|
||||
for fn = fieldnames(data)'
|
||||
sim_data.(fn{1}) = data.(fn{1});
|
||||
end
|
||||
|
||||
% initialize prediction horizon
|
||||
sim_data.U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
|
||||
sim_data
|
||||
|
||||
% simulate robot
|
||||
tic;
|
||||
[t, q, y, ref_t, U, U_track, Q_pred, Prob] = simulate_discr(sim_data);
|
||||
toc;
|
||||
|
||||
disp('Done')
|
||||
|
||||
% save simulation data
|
||||
f1 = [ TEST '/' char(datetime, 'dd-MM-yyyy-HH-mm-ss')]; % windows compatible name
|
||||
f = ['results-' ROBOT '-costfun2-st/' f1];
|
||||
mkdir(f)
|
||||
% save workspace
|
||||
dsave([f '/workspace_composite.mat']);
|
||||
% save test file
|
||||
copyfile(['tests/' TEST], f);
|
||||
|
||||
% save figures + plot results
|
||||
% plot results
|
||||
h = figure('Name', [TEST ' ' num2str(CONTROLLER)] );
|
||||
plot_results(t, q, ref_t, U, U_track, U_track);
|
||||
% save figures
|
||||
savefig(h, [f '/figure.fig']);
|
||||
end
|
||||
|
||||
|
||||
%% FUNCTION DECLARATIONS
|
||||
|
||||
% Discrete-time simulation
|
||||
function [t, q, y, ref_t, U, U_track, Q_pred, Prob] = simulate_discr(sim_data)
|
||||
tc = sim_data.tc;
|
||||
steps = sim_data.tfin/tc
|
||||
|
||||
q = sim_data.q0';
|
||||
t = 0;
|
||||
|
||||
Q_pred = zeros(sim_data.PREDICTION_HORIZON,3, steps + 1);
|
||||
Prob = cell(steps+1, 1);
|
||||
|
||||
[u_discr, u_track, q_pred, prob] = control_act(t(end), q(end, :), sim_data);
|
||||
U = u_discr';
|
||||
U_track = u_track';
|
||||
Q_pred(:, :, 1) = q_pred;
|
||||
Prob{1} = prob;
|
||||
|
||||
if eq(sim_data.robot, 0)
|
||||
fun = @(t, q, u_discr, sim_data) unicycle(t, q, u_discr, sim_data);
|
||||
elseif eq(sim_data.robot, 1)
|
||||
fun = @(t, q, u_discr, sim_data) diffdrive(t, q, u_discr, sim_data);
|
||||
end
|
||||
|
||||
for n = 1:steps
|
||||
tspan = [(n-1)*tc n*tc];
|
||||
z0 = q(end, :);
|
||||
|
||||
opt = odeset('MaxStep', 0.005);
|
||||
[v, z] = ode45(@(v, z) fun(v, z, u_discr, sim_data), tspan, z0, opt);
|
||||
|
||||
q = [q; z];
|
||||
t = [t; v];
|
||||
|
||||
[u_discr, u_track, q_pred, prob] = control_act(t(end), q(end, :), sim_data);
|
||||
Prob{1+n} = prob;
|
||||
U = [U; ones(length(v), 1)*u_discr'];
|
||||
U_track = [U_track; ones(length(v), 1)*u_track'];
|
||||
Q_pred(:, :, 1+n) = q_pred;
|
||||
end
|
||||
|
||||
y1 = q(:, 1) + sim_data.b * cos(q(:,3));
|
||||
y2 = q(:, 2) + sim_data.b * sin(q(:,3));
|
||||
y = [y1, y2];
|
||||
|
||||
ref_t = double(subs(sim_data.ref, t'))';
|
||||
end
|
||||
|
||||
%%
|
Loading…
Reference in New Issue