Compare commits

...

7 Commits

7 changed files with 158 additions and 220 deletions

View File

@ -1,162 +1,134 @@
function [u, ut, uc, U_corr_history, q_pred] = control_act(t, q, sim_data) function [u, ut, q_pred] = control_act(t, q, sim_data)
pred_hor = sim_data.PREDICTION_HORIZON;
% track only
if eq(pred_hor, 0)
dc = decouple_matrix(q, sim_data); dc = decouple_matrix(q, sim_data);
ut = utrack(t, q, sim_data); ut = utrack(t, q, sim_data);
[uc, U_corr_history, q_pred] = ucorr(t, q, sim_data); u = dc*ut;
ut = dc*ut;
%uc = dc*uc;
%uc = zeros(2,1);
u = ut+uc;
% saturation % saturation
u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u)); u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
prob = [];
q_pred = [];
return
end end
function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data) % mpc
pred_hor = sim_data.PREDICTION_HORIZON;
SATURATION = sim_data.SATURATION; SATURATION = sim_data.SATURATION;
PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE; PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE;
tc = sim_data.tc; tc = sim_data.tc;
u_corr = zeros(2,1);
U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
q_act = q;
u_track_pred=zeros(2,1, pred_hor);
T_inv_pred=zeros(2,2, pred_hor);
q_pred = [];
s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE; s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE;
if eq(pred_hor, 0)
return
elseif eq(pred_hor, 1)
H = eye(2);
f = zeros(2,1);
T_inv = decouple_matrix(q_act, sim_data);
ut = utrack(t, q_act, sim_data);
%A = [T_inv; -T_inv];
A = [eye(2); -eye(2)];
d = T_inv*ut; % prediction
b = [s_-d;s_+d]; %T_invs = zeros(2,2, pred_hor);
%Qs = zeros(3,1,pred_hor);
%drefs = zeros(2,1, pred_hor);
%refs = zeros(2,1, pred_hor);
% solve qp problem % optim problem
options = optimoptions('quadprog', 'Display', 'off'); prob = optimproblem('ObjectiveSense', 'minimize');
u_corr = quadprog(H, f, A, b, [],[],[],[],[],options); % objective
obj = 0;
% decision vars
ss_ = repmat(s_, [1,1, pred_hor]);
ucorr = optimvar('ucorr', 2, pred_hor,'LowerBound', -ss_, 'UpperBound', ss_);
% state vars
Q = optimvar('state', 3, pred_hor);
% initial conditions
prob.Constraints.evo = Q(:, 1) == q';
q_pred = q_act;
U_corr_history(:,:,1) = u_corr;
return
else
%if pred_hor > 1
% move the horizon over 1 step and add trailing zeroes
U_corr_history = cat(3, sim_data.U_corr_history(:,:, 2:end), zeros(2,1));
%end
%disp('start of simulation') % linearization around robot trajectory
% for each step in the prediction horizon, integrate the system to % only needs to be calculated once
% predict its future state theta = q(3);
st = sin(theta);
ct = cos(theta);
T_inv = decouple_matrix(q, sim_data);
for k=1:pred_hor for k=1:pred_hor
% start from the old (known) state
% compute the inputs, based on the old state
% u_corr is the prediction done at some time in the past, as found in U_corr_history
u_corr_ = U_corr_history(:, :, k);
% u_track can be computed from q
t_ = t + tc * (k-1); t_ = t + tc * (k-1);
u_track_ = utrack(t_, q_act, sim_data);
T_inv = decouple_matrix(q_act, sim_data); % reference trajectory and derivative
% compute inputs (v, w)/(wr, wl) ref_s = double(subs(sim_data.ref, t_));
u_ = T_inv * u_track_ + u_corr_; dref_s = double(subs(sim_data.dref, t_));
% if needed, map (wr, wl) to (v, w) for unicicle
if eq(sim_data.robot, 1)
u_ = diffdrive_to_uni(u_, sim_data);
end
% integrate unicycle
theta_new = q_act(3) + tc*u_(2);
% compute the state integrating with euler
%x_new = q_act(1) + tc*u_(1) * cos(q_act(3));
%y_new = q_act(2) + tc*u_(1) * sin(q_act(3));
% compute the state integrating via runge-kutta
x_new = q_act(1) + tc*u_(1) * cos(q_act(3) + 0.5*tc*u_(2));
y_new = q_act(2) + tc*u_(1) * sin(q_act(3) + 0.5*tc*u_(2));
q_new = [x_new; y_new; theta_new];
% save history
q_pred = [q_pred; q_new'];
u_track_pred(:,:,k) = u_track_;
T_inv_pred(:,:,k) = T_inv;
% Prepare old state for next iteration
q_act = q_new;
end
%{ %{
Now setup the qp problem % linearization around trajectory trajectory, hybrid approach
It needs: % theta from reference position and velocity
- Unknowns, u_corr at each timestep. Will be encoded as a vector of if eq(k, 1)
vectors, in which every two elements is a u_j % only for the first step, theta from the current state
i.e. (u_1; u_2; u_3; ...; u_C) = (v_1; w_1; v_2, w_2; v_3, w_3; ... theta = q(3);
; v_C, w_C) else
It is essential that the vector stays a column, so that u'u is the % then linearize around reference trajectory
sum of the squared norms of each u_j % proper way
theta = mod( atan2(dref_s(2), dref_s(1)) + 2*pi, 2*pi);
- Box constraints: a constraint for each timestep in the horizon. % or, derivative using difference. Seem to give the same
Calculated using the predicted state and inputs. They need to be % results
put in matrix (Ax <= b) form %ref_s1 = double(subs(sim_data.ref, t_ + tc));
%theta = atan2(ref_s1(2)-ref_s(2), ref_s1(1)-ref_s(1));
end
st = sin(theta);
ct = cos(theta);
T_inv = decouple_matrix([ref_s(1); ref_s(2); theta], sim_data);
%} %}
% box constrains %{
% A becomes sort of block-diagonal % linearization around trajectory trajectory, "correct" approach
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2: theta = mod( atan2(dref_s(2), dref_s(1)) + 2*pi, 2*pi);
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON (number of st = sin(theta);
% vectors in u_corr times the number of elements [2] in each vector) ct = cos(theta);
A_deq = []; T_inv = decouple_matrix([ref_s(1); ref_s(2); theta], sim_data);
b_deq = []; %}
s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE;
for k=1:pred_hor
T_inv = T_inv_pred(:,:,k);
u_track = u_track_pred(:,:,k);
% [T_inv; -T_inv] is a 4x2 matrix
%A_deq = blkdiag(A_deq, [T_inv; -T_inv]);
A_deq = blkdiag(A_deq, [eye(2); -eye(2)]);
d = T_inv*u_track; % not at the end of the horizon
b_deq = [b_deq; s_ - d; s_ + d]; if k < pred_hor - 1
if eq(sim_data.robot, 0)
% inputs for unicycle
v = ucorr(1,k);
w = ucorr(2,k);
else
% inputs for differential drive
v = sim_data.r * (ucorr(1,k) + ucorr(2,k)) / 2;
w = sim_data.r * (ucorr(1,k) - ucorr(2,k)) / sim_data.d;
end end
%A_deq % evolution constraints
%b_deq c = Q(:, k+1) == Q(:, k) + [v*tc*ct; v*tc*st; w*tc];
% unknowns prob.Constraints.evo = [prob.Constraints.evo; c];
% squared norm of u_corr. H must be identity,
% PREDICTION_HORIZON*size(u_corr)
H = eye(pred_hor*2)*2;
% no linear terms
f = zeros(pred_hor*2, 1);
% solve qp problem
options = optimoptions('quadprog', 'Display', 'off');
U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
%U_corr = lsqnonlin(@(pred_hor) ones(pred_hor, 1), U_corr_history(:,:,1), [], [], A_deq, b_deq, [], []);
% reshape the vector of vectors to be an array, each element being
% u_corr_j as a 2x1 vector
% and add the prediction at t_k+C
U_corr_history = reshape(U_corr, [2,1,pred_hor]);
% first result is what to do now
u_corr=U_corr_history(:,:, 1);
end end
% objective
% sum of squared norms of u-q^d
% feedback + tracking input
% cannot use the utrack function, or the current formulation makes
% the problem become non linear
err = ref_s - [Q(1, k) + sim_data.b*ct; Q(2, k) + sim_data.b*st ];
ut_ = dref_s + sim_data.K*err;
%ut = utrack(t_, Q(k, :), sim_data);
qd = T_inv*ut_;
ud = ucorr(:, k)-qd;
obj = obj + (ud')*ud;
end
% end linearization around trajectory
prob.Objective = obj;
%show(prob)
%disp("to struct")
%prob2struct(prob);
opts=optimoptions(@quadprog,'Display','off');
sol = solve(prob, 'Options',opts);
u = sol.ucorr(:, 1);
q_pred = sol.state';
% ideal tracking for the predicted state
ut = decouple_matrix(q_pred, sim_data)*utrack(t, q_pred, sim_data);
end end
function u_track = utrack(t, q, sim_data) function u_track = utrack(t, q, sim_data)

View File

@ -1,13 +1,11 @@
clc clc
clear all clear all
close all close allQQQ
%load('results-diffdrive/circle/start_center/10-09-2024 13-27-12/workspace_composite.mat') %load('results-diffdrive/circle/start_center/10-09-2024 13-27-12/workspace_composite.mat')
%load('results-diffdrive/circle/start_center/10-09-2024 15-33-08/workspace_composite.mat') load('results-diffdrive/circle/start_center/10-09-2024 15-33-08/workspace_composite.mat')
%load('/home/emamaker/documents/Università/tesi/tesi-sim/results-diffdrive/square/10-09-2024 13-53-35/workspace_composite.mat') %load('/home/emamaker/documents/Università/tesi/tesi-sim/results-diffdrive/square/10-09-2024 13-53-35/workspace_composite.mat')
load('results-diffdrive/figure8/toofast/10-09-2024-22-35-17/workspace_composite.mat')
y = cell(1,3); y = cell(1,3);

View File

@ -8,27 +8,8 @@ disp('Photos will start in 3s')
pause(3) pause(3)
PLOT_TESTS = [ PLOT_TESTS = [
%{ "results-unicycle-costfun2-soltraj/circle/start_center/21-09-2024-15-29-40"
"results-diffdrive/straightline/chill/11-09-2024-16-57-01"; "results-diffdrive-costfun2-soltraj/circle/start_center/21-09-2024-12-16-00"
"results-diffdrive/straightline/chill_errortheta_pisixths/11-09-2024-16-57-43";
"results-diffdrive/straightline/chill_errory/11-09-2024-16-59-04";
"results-diffdrive/straightline/toofast/11-09-2024-16-58-24";
"results-diffdrive/circle/start_center/11-09-2024-16-59-50";
"results-diffdrive/square/11-09-2024-17-06-14";
"results-diffdrive/figure8/chill/11-09-2024-17-00-53";
%"results-diffdrive/figure8/fancyreps/11-09-2024--45-28";
"results-diffdrive/figure8/toofast/11-09-2024-17-01-43";
%}
%"results-unicycle/straightline/chill/11-09-2024-17-07-51";
%"results-unicycle/straightline/chill_errortheta_pisixths/11-09-2024-17-08-35";
%"results-unicycle/straightline/chill_errory/11-09-2024-17-10-00";
%"results-unicycle/straightline/toofast/11-09-2024-17-09-18";
%"results-unicycle/circle/start_center/11-09-2024-17-10-48";
"results-unicycle/square/11-09-2024-17-17-21";
%"results-unicycle/figure8/chill/11-09-2024-17-11-53";
%"results-unicycle/figure8/fancyreps/11-09-2024--45-28";
%"results-unicycle/figure8/toofast/11-09-2024-17-12-45";
] ]
s_ = size(PLOT_TESTS) s_ = size(PLOT_TESTS)
@ -39,7 +20,7 @@ for i = 1:s_(1)
PLOT_TEST = [sPLOT_TEST, '/workspace_composite.mat'] PLOT_TEST = [sPLOT_TEST, '/workspace_composite.mat']
load(PLOT_TEST) load(PLOT_TEST)
dir = ['images-', ROBOT, '/', sPLOT_TEST, '/'] dir = ['images-', ROBOT, '-costfun2-soltraj/', sPLOT_TEST, '/']
mkdir(dir); mkdir(dir);
for n=1:3 for n=1:3
@ -52,14 +33,6 @@ for i = 1:s_(1)
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_trajectory.png']) pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_trajectory.png'])
pause(1); clf; plot_error(t{n}, ref_t{n}, q{n}) pause(1); clf; plot_error(t{n}, ref_t{n}, q{n})
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_error.png']) pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_error.png'])
pause(1); clf; plot_doubleinput(t{n}, sim_data{n}.SATURATION, U_track{n}, U_corr{n}, 0, in1, in2, m1, m2)
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_double_input_1x2.png'])
pause(1); clf; plot_doubleinput(t{n}, sim_data{n}.SATURATION, U_track{n}, U_corr{n}, 1, in1, in2, m1, m2)
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_double_input_2x1.png'])
pause(1); clf; plot_tripleinput(t{n}, sim_data{n}.SATURATION, U{n}, U_track{n}, U_corr{n}, 0, in1, in2, m1, m2)
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_triple_input_1x2.png'])
pause(1); clf; plot_tripleinput(t{n}, sim_data{n}.SATURATION, U{n}, U_track{n}, U_corr{n}, 1, in1, in2, m1, m2)
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_triple_input_2x1.png'])
%pause(1); clf; plot_input(t{n}, sim_data{n}.SATURATION, U_track{n}, 'track') %pause(1); clf; plot_input(t{n}, sim_data{n}.SATURATION, U_track{n}, 'track')
%pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_track_input.png']) %pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_track_input.png'])
@ -70,13 +43,12 @@ for i = 1:s_(1)
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_total_input_1x2.png']) pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_total_input_1x2.png'])
pause(1); clf; plot_input(t{n},sim_data{n}.SATURATION, U{n}, 1, '', in1, in2, m1, m2) pause(1); clf; plot_input(t{n},sim_data{n}.SATURATION, U{n}, 1, '', in1, in2, m1, m2)
pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_total_input_2x1.png']) pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_total_input_2x1.png'])
end
% correction difference (multistep, 1-step) pause(1); clf; plot_trajectory(t{n}, ref_t{n}, y{n})
pause(1); clf; plot_input_diff(t{3}, t{2}, U_corr{3}, U_corr{2}, 0, ['\textbf{$$' in1 '^{corr, multistep}$$}'], ['\textbf{$$' in1 '^{corr, 1step}$$}'], ['\textbf{$$' in2 '^{corr, multistep}$$}'], ['\textbf{$$' in2 '^{corr, 1step}$$}'], m1, m2) pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_trajectory_out.png'])
pause(0.5); export_fig(gcf, '-transparent', [dir, 'corr_input_diff_1x2.png']) pause(1); clf; plot_error(t{n}, ref_t{n}, y{n})
pause(1); clf; plot_input_diff(t{3}, t{2}, U_corr{3}, U_corr{2}, 1, ['\textbf{$$' in1 '^{corr, multistep}$$}'], ['\textbf{$$' in1 '^{corr, 1step}$$}'], ['\textbf{$$' in2 '^{corr, multistep}$$}'], ['\textbf{$$' in2 '^{corr, 1step}$$}'], m1, m2) pause(0.5); export_fig(gcf, '-transparent', [dir, num2str(n), '_error_out.png'])
pause(0.5); export_fig(gcf, '-transparent', [dir, 'corr_input_diff_2x1.png']) end
% input difference (saturated track only, 1-step) % input difference (saturated track only, 1-step)
pause(1); clf; plot_input_diff(t{1}, t{2}, U{1}, U{2}, 0, ['\textbf{$$' in1 '^{trackonly-sat}$$}'], ['\textbf{$$' in1 '^{1step}$$}'], ['\textbf{$$' in2 '^{trackonly-sat}$$}'], ['\textbf{$$' in2 '^{1step}$$}'], m1, m2) pause(1); clf; plot_input_diff(t{1}, t{2}, U{1}, U{2}, 0, ['\textbf{$$' in1 '^{trackonly-sat}$$}'], ['\textbf{$$' in1 '^{1step}$$}'], ['\textbf{$$' in2 '^{trackonly-sat}$$}'], ['\textbf{$$' in2 '^{1step}$$}'], m1, m2)
@ -95,5 +67,4 @@ for i = 1:s_(1)
pause(0.5); export_fig(gcf, '-transparent', [dir, 'input_diff_1step_multistep_1x2.png']) pause(0.5); export_fig(gcf, '-transparent', [dir, 'input_diff_1step_multistep_1x2.png'])
pause(1); clf; plot_input_diff(t{2}, t{3}, U{2}, U{3}, 1, ['\textbf{$$' in1 '^{1step}$$}'], ['\textbf{$$' in1 '^{multistep}$$}'], ['\textbf{$$' in2 '^{1step}$$}'], ['\textbf{$$' in2 '^{multistep}$$}'], m1, m2) pause(1); clf; plot_input_diff(t{2}, t{3}, U{2}, U{3}, 1, ['\textbf{$$' in1 '^{1step}$$}'], ['\textbf{$$' in1 '^{multistep}$$}'], ['\textbf{$$' in2 '^{1step}$$}'], ['\textbf{$$' in2 '^{multistep}$$}'], m1, m2)
pause(0.5); export_fig(gcf, '-transparent', [dir, 'input_diff_1step_multistep_2x1.png']) pause(0.5); export_fig(gcf, '-transparent', [dir, 'input_diff_1step_multistep_2x1.png'])
end end

View File

@ -20,5 +20,7 @@ switch i
q0 = [0;0;pi/2]; q0 = [0;0;pi/2];
case 9 case 9
q0 = [2.5; 0; pi/2]; q0 = [2.5; 0; pi/2];
case 10
q0 = [0;0;deg2rad(3)];
end end
end end

49
tesi.m
View File

@ -3,9 +3,10 @@ clear all
close all close all
% options % options
ROBOT = 'unicycle' ROBOT = 'diffdrive'
TESTS = ["straightline/chill", "straightline/chill_errortheta_pisixths", "straightline/toofast", "straightline/chill_errory", "circle/start_center", "figure8/chill", "figure8/toofast", "square"] %TESTS = ["straightline/chill", "straightline/chill_errortheta_pisixths", "straightline/toofast", "straightline/chill_errory", "circle/start_center", "figure8/chill", "figure8/toofast", "square"]
%TESTS = ["circle/start_center"] %TESTS = ["straightline/chill", "straightline/chill_errortheta_3deg", "circle/start_center", "square", "figure8/chill"]
TESTS = ["circle/start_center"]
% main % main
s_ = size(TESTS); s_ = size(TESTS);
@ -29,6 +30,7 @@ for i = 1:length(TESTS)
[ref dref] = set_trajectory(sim_data.TRAJECTORY, sim_data); [ref dref] = set_trajectory(sim_data.TRAJECTORY, sim_data);
sim_data.ref = ref; sim_data.ref = ref;
sim_data.dref = dref; sim_data.dref = dref;
%sim_data.tfin = 15;
% spawn a new worker for each controller % spawn a new worker for each controller
% 1: track only % 1: track only
@ -50,13 +52,17 @@ for i = 1:length(TESTS)
sim_data.(fn{1}) = data.(fn{1}); sim_data.(fn{1}) = data.(fn{1});
end end
if sim_data.PREDICTION_HORIZON > 1
sim_data.PREDICITON_HORIZON = 40
end
% initialize prediction horizon % initialize prediction horizon
sim_data.U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON); sim_data.U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
sim_data sim_data
% simulate robot % simulate robot
tic; tic;
[t, q, y, ref_t, U, U_track, U_corr, U_corr_pred_history, Q_pred] = simulate_discr(sim_data); [t, q, y, ref_t, U, U_track, Q_pred] = simulate_discr(sim_data);
toc; toc;
disp('Done') disp('Done')
@ -64,7 +70,7 @@ for i = 1:length(TESTS)
% save simulation data % save simulation data
f1 = [ TEST '/' char(datetime, 'dd-MM-yyyy-HH-mm-ss')]; % windows compatible name f1 = [ TEST '/' char(datetime, 'dd-MM-yyyy-HH-mm-ss')]; % windows compatible name
f = ['results-' ROBOT '/' f1]; f = ['results-' ROBOT '-costfun2-soltraj/' f1];
mkdir(f) mkdir(f)
% save workspace % save workspace
dsave([f '/workspace_composite.mat']); dsave([f '/workspace_composite.mat']);
@ -77,16 +83,16 @@ for i = 1:length(TESTS)
s1_ = size(worker_index); s1_ = size(worker_index);
for n = 1:s1_(2) for n = 1:s1_(2)
h = [h, figure('Name', [TEST ' ' num2str(n)] )]; h = [h, figure('Name', [TEST ' ' num2str(n)] )];
plot_results(t{n}, q{n}, ref_t{n}, U{n}, U_track{n}, U_corr{n}); plot_results(t{n}, q{n}, ref_t{n}, U{n}, U_track{n}, U_track{n});
end end
% plot correction different between 1-step and multistep % plot correction different between 1-step and multistep
h = [h, figure('Name', 'difference between 1step and multistep')]; h = [h, figure('Name', 'difference between 1step and multistep')];
subplot(2,1,1) subplot(2,1,1)
plot(t{2}, U_corr{2}(:, 1) - U_corr{3}(:, 1)) plot(t{2}, U{2}(:, 1) - U{3}(:, 1))
xlabel('t') xlabel('t')
ylabel(['difference on ' sim_data{1}.input1_name ' between 1-step and multistep']) ylabel(['difference on ' sim_data{1}.input1_name ' between 1-step and multistep'])
subplot(2,1,2) subplot(2,1,2)
plot(t{2}, U_corr{2}(:, 2) - U_corr{3}(:, 2)) plot(t{2}, U{2}(:, 2) - U{3}(:, 2))
xlabel('t') xlabel('t')
ylabel(['difference on ' sim_data{1}.input2_name ' between 1-step and multistep']) ylabel(['difference on ' sim_data{1}.input2_name ' between 1-step and multistep'])
% save figures % save figures
@ -98,25 +104,23 @@ for i = 1:length(TESTS)
end end
%% FUNCTION DECLARATIONS %% FUNCTION DECLARATIONS
% Discrete-time simulation % Discrete-time simulation
function [t, q, y, ref_t, U, U_track, U_corr, U_corr_pred_history, Q_pred] = simulate_discr(sim_data) function [t, q, y, ref_t, U, U_track, Q_pred] = simulate_discr(sim_data)
tc = sim_data.tc; tc = sim_data.tc;
steps = sim_data.tfin/tc steps = sim_data.tfin/tc
q = sim_data.q0'; q = sim_data.q0';
t = 0; t = 0;
Q_pred = zeros(sim_data.PREDICTION_HORIZON,3,sim_data.tfin/sim_data.tc + 1);
U_corr_pred_history=zeros(sim_data.PREDICTION_HORIZON,2,steps);
[u_discr, u_track, u_corr, U_corr_history, q_pred] = control_act(t, q, sim_data); Q_pred = zeros(sim_data.PREDICTION_HORIZON,3, steps + 1);
sim_data.U_corr_history = U_corr_history;
[u_discr, u_track, q_pred] = control_act(t(end), q(end, :), sim_data);
U = u_discr'; U = u_discr';
U_corr = u_corr';
U_track = u_track'; U_track = u_track';
Q_pred(:, :, 1) = q_pred; Q_pred(:, :, 1) = q_pred;
y = [];
if eq(sim_data.robot, 0) if eq(sim_data.robot, 0)
fun = @(t, q, u_discr, sim_data) unicycle(t, q, u_discr, sim_data); fun = @(t, q, u_discr, sim_data) unicycle(t, q, u_discr, sim_data);
@ -125,10 +129,6 @@ function [t, q, y, ref_t, U, U_track, U_corr, U_corr_pred_history, Q_pred] = sim
end end
for n = 1:steps for n = 1:steps
sim_data.old_u_corr = u_corr;
sim_data.old_u_track = u_track;
sim_data.old_u = u_discr;
tspan = [(n-1)*tc n*tc]; tspan = [(n-1)*tc n*tc];
z0 = q(end, :); z0 = q(end, :);
@ -138,21 +138,16 @@ function [t, q, y, ref_t, U, U_track, U_corr, U_corr_pred_history, Q_pred] = sim
q = [q; z]; q = [q; z];
t = [t; v]; t = [t; v];
[u_discr, u_track, u_corr, U_corr_history, q_pred] = control_act(t(end), q(end, :), sim_data); [u_discr, u_track, q_pred] = control_act(t(end), q(end, :), sim_data);
sim_data.U_corr_history = U_corr_history;
U = [U; ones(length(v), 1)*u_discr']; U = [U; ones(length(v), 1)*u_discr'];
U_corr = [U_corr; ones(length(v), 1)*u_corr'];
U_track = [U_track; ones(length(v), 1)*u_track']; U_track = [U_track; ones(length(v), 1)*u_track'];
Q_pred(:, :, 1+n) = q_pred; Q_pred(:, :, 1+n) = q_pred;
end
U_corr_pred_history(:,:,n) = permute(U_corr_history, [3, 1, 2]);
y1 = q(:, 1) + sim_data.b * cos(q(:,3)); y1 = q(:, 1) + sim_data.b * cos(q(:,3));
y2 = q(:, 2) + sim_data.b * sin(q(:,3)); y2 = q(:, 2) + sim_data.b * sin(q(:,3));
y = [y; y1, y2]; y = [y1, y2];
end
ref_t = double(subs(sim_data.ref, t'))'; ref_t = double(subs(sim_data.ref, t'))';
end end
%%

Binary file not shown.