thesis/tesiema.m

172 lines
4.0 KiB
Matlab

clc
clear all
close all
TEST = 'sin'
sim_data = load(['tests/' TEST '/common.mat']);
sim_data.q0 = set_initial_conditions(sim_data.INITIAL_CONDITIONS);
[ref dref] = set_trajectory(sim_data.TRAJECTORY);
sim_data.ref = ref;
sim_data.dref = dref;
%sim_data.SATURATION = [0.5; 0.5];
% spmd (3)
% worker_index = spmdIndex;
% data = load(['tests/' TEST '/' num2str(spmdIndex) '.mat']);
%
% sim_data.PREDICTION_HORIZON = data.PREDICTION_HORIZON;
% sim_data.U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
% sim_data
%
% [t, q, ref_t, U] = simulate_discr(sim_data);
%
% disp('Done')
% end
%
% s_ = size(worker_index);
% for n = 1:s_(2)
% figure(n)
% plot_results(t{n}, q{n}, ref_t{n}, U{n});
% end
data = load(['tests/' TEST '/' num2str(2) '.mat']);
sim_data.PREDICTION_HORIZON = data.PREDICTION_HORIZON;
sim_data.U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
sim_data
[t, q, ref_t, U, U_track, U_corr] = simulate_discr(sim_data);
%%
plot_results(t,q,ref_t,U, U_track, U_corr);
%% FUNCTION DECLARATIONS
% Discrete-time simulation
function [t, q, ref_t, U, U_track, U_corr] = simulate_discr(sim_data)
tc = sim_data.tc;
steps = sim_data.tfin/tc
q = sim_data.q0';
t = 0;
[u_discr, u_track, u_corr, U_corr_history] = control_act(t, q, sim_data);
sim_data.U_corr_history = U_corr_history;
U = u_discr';
U_corr = u_corr';
U_track = u_track';
for n = 1:steps
tspan = [(n-1)*tc n*tc];
z0 = q(end, :);
%[v, z] = ode45(@sistema_discr, tspan, z0, u_discr);
[v, z] = ode45(@(v, z) sistema_discr(v, z, u_discr), tspan, z0);
q = [q; z];
t = [t; v];
[u_discr, u_track, u_corr, U_corr_history] = control_act(t(end), q(end, :), sim_data);
sim_data.U_corr_history = U_corr_history;
U = [U; ones(length(v), 1)*u_discr'];
U_corr = [U_corr; ones(length(v), 1)*u_corr'];
U_track = [U_track; ones(length(v), 1)*u_track'];
end
ref_t = double(subs(sim_data.ref, t'))';
end
% Continuos-time simulation
function [t, q, ref, U] = simulate_cont(tfin)
global ref q0
% simulation time
tspan = linspace(0, tfin);
% execute simulation
[t, q] = ode45(@sistema, tspan, q0);
% recalc and save input at each timestep
ts = size(t);
rows = ts(1);
U = zeros(rows, 2);
for row = 1:rows
U(row, :) = control_act(t(row), q(row, :));
end
% plot results
ref = double(subs(ref, t'))';
end
%%
% Plots
function plot_results(t, x, ref, U, U_track, U_corrcd)
subplot(4,2,1)
hold on
title("trajectory / state")
plot(ref(:, 1), ref(:, 2), "DisplayName", "Ref")
plot(x(:, 1), x(:, 2), "DisplayName", "state")
xlabel('x')
ylabel('y')
legend()
subplot(4,2,3)
plot(t, U(:, 1))
xlabel('t')
ylabel('input v')
subplot(4,2,4)
plot(t, U(:, 2))
xlabel('t')
ylabel('input w')
subplot(4,2,5)
plot(t, U_corr(:, 1))
xlabel('t')
ylabel('input correction v')
subplot(4,2,6)
plot(t, U_corr(:, 2))
xlabel('t')
ylabel('input correction w')
subplot(4,2,7)
plot(t, U_track(:, 1))
xlabel('t')
ylabel('tracking input v')
subplot(4,2,8)
plot(t, U_track(:, 2))
xlabel('t')
ylabel('tracking input w')
subplot(8,4,3)
hold on
xlabel('t')
ylabel('x')
plot(t, ref(:, 1), "DisplayName", "X_{ref}");
plot(t, x(:, 1), "DisplayName", "X");
legend()
hold off
subplot(8,4,4)
plot(t, ref(:, 1) - x(:, 1));
xlabel('t')
ylabel('x error')
subplot(8,4,7)
hold on
xlabel('t')
ylabel('y')
plot(t, ref(:, 2), "DisplayName", "Y_{ref}");
plot(t, x(:, 2), "DisplayName", "Y");
legend()
hold off
subplot(8,4,8)
plot(t, ref(:, 2) - x(:, 2));
xlabel('t')
ylabel('y error')
end