thesis/control_act.m

174 lines
5.4 KiB
Matlab

function [u, ut, uc, U_corr_history, q_pred] = control_act(t, q, sim_data)
dc = decouple_matrix(q, sim_data);
ut = utrack(t, q, sim_data);
[uc, U_corr_history, q_pred] = ucorr(t, q, sim_data);
ut = dc*ut;
uc = dc*uc;
u = ut+uc;
% saturation
u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
end
function [u_corr, U_corr_history, q_pred] = ucorr(t, q, sim_data)
pred_hor = sim_data.PREDICTION_HORIZON;
SATURATION = sim_data.SATURATION;
PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE;
tc = sim_data.tc;
u_corr = zeros(2,1);
U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
q_act = q;
u_track_pred=zeros(2,1, pred_hor);
T_inv_pred=zeros(2,2, pred_hor);
q_pred = [];
if eq(pred_hor, 0)
return
end
if pred_hor > 1
% move the horizon over 1 step and add trailing zeroes
U_corr_history = cat(3, sim_data.U_corr_history(:,:, 2:end), zeros(2,1));
end
%disp('start of simulation')
% for each step in the prediction horizon, integrate the system to
% predict its future state
for k = 1:pred_hor
% start from the old (known) state
% compute the inputs, based on the old state
% u_corr is the prediction done at some time in the past, as found in U_corr_history
u_corr_ = U_corr_history(:, :, k);
% u_track can be computed from q
t_ = t + tc * (k-1);
u_track_ = utrack(t_, q_act, sim_data);
T_inv = decouple_matrix(q_act, sim_data);
% compute inputs (wr, wl)
u_ = T_inv * (u_corr_ + u_track_);
% map (wr, wl) to (v, w) for unicicle
u_ = diffdrive_to_uni(u_, sim_data);
% integrate unicycle
theta_new = q_act(3) + tc*u_(2);
% compute the state integrating with euler
%x_new = q_act(1) + tc*u_(1) * cos(q_act(3));
%y_new = q_act(2) + tc*u_(1) * sin(q_act(3));
% compute the state integrating via runge-kutta
x_new = q_act(1) + tc*u_(1) * cos(q_act(3) + 0.5*tc*u_(2));
y_new = q_act(2) + tc*u_(1) * sin(q_act(3) + 0.5*tc*u_(2));
q_new = [x_new; y_new; theta_new];
% save history
q_pred = [q_pred; q_new'];
u_track_pred(:,:,k) = u_track_;
T_inv_pred(:,:,k) = T_inv;
% Prepare old state for next iteration
q_act = q_new;
end
%{
Now setup the qp problem
It needs:
- Unknowns, u_corr at each timestep. Will be encoded as a vector of
vectors, in which every two elements is a u_j
i.e. (u_1; u_2; u_3; ...; u_C) = (v_1; w_1; v_2, w_2; v_3, w_3; ...
; v_C, w_C)
It is essential that the vector stays a column, so that u'u is the
sum of the squared norms of each u_j
- Box constraints: a constraint for each timestep in the horizon.
Calculated using the predicted state and inputs. They need to be
put in matrix (Ax <= b) form
%}
% box constrains
% A becomes sort of block-diagonal
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON (number of
% vectors in u_corr times the number of elements [2] in each vector)
A_max_elems = pred_hor * 2 * 2;
A_deq = [];
b_deq = [];
s_ = SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE;
for k=1:pred_hor
T_inv = T_inv_pred(:,:,k);
u_track = u_track_pred(:,:,k);
% [T_inv; -T_inv] is a 4x2 matrix
n_zeros_before = (k-1) * 4;
n_zeros_after = A_max_elems - n_zeros_before - 4;
zeros_before = zeros(n_zeros_before, 2);
zeros_after = zeros(n_zeros_after, 2);
column = [zeros_before; T_inv; -T_inv; zeros_after];
A_deq = [A_deq, column];
d = T_inv*u_track;
b_deq = [b_deq; s_ - d; s_ + d];
end
%A_deq
%b_deq
% unknowns
% squared norm of u_corr. H must be identity,
% PREDICTION_HORIZON*size(u_corr)
H = eye(pred_hor*2);
% no linear terms
f = zeros(pred_hor*2, 1);
% solve qp problem
options = optimoptions('quadprog', 'Display', 'off');
U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
%U_corr = lsqnonlin(@(pred_hor) ones(pred_hor, 1), U_corr_history(:,:,1), [], [], A_deq, b_deq, [], []);
% reshape the vector of vectors to be an array, each element being
% u_corr_j as a 2x1 vector
% and add the prediction at t_k+C
U_corr_history = reshape(U_corr, [2,1,pred_hor]);
% first result is what to do now
u_corr=U_corr_history(:,:, 1);
end
function u_track = utrack(t, q, sim_data)
ref_s = double(subs(sim_data.ref, t));
dref_s = double(subs(sim_data.dref, t));
f = feedback(q, sim_data.b);
err = ref_s - f;
u_track = dref_s + sim_data.K*err;
end
function q_track = feedback(q, b)
q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
end
function T_inv = decouple_matrix(q, sim_data)
theta = q(3);
st = sin(theta);
ct = cos(theta);
b = sim_data.b;
r = sim_data.r;
d = sim_data.d;
%a1 = sim_data.r*0.5;
%a2 = sim_data.b*sim_data.r/sim_data.d;
%det_inv = -sim_data.d/(sim_data.b*sim_data.r*sim_data.r);0
%T_inv = det_inv * [ a1*st - a2*ct, -a1*ct - a2*st;-a1*st-a2*ct , a1*ct - a2*st];
T_inv = [2*b*ct - d*st, d*ct + 2*b*st ; 2*b*ct + d*st, -d*ct+2*b*st] / (2*b*r);
end