voxel-engine/lib/glm/ext/quaternion_common.inl

145 lines
4.4 KiB
Plaintext
Raw Normal View History

namespace glm
{
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> mix(qua<T, Q> const& x, qua<T, Q> const& y, T a)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'mix' only accept floating-point inputs");
T const cosTheta = dot(x, y);
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > static_cast<T>(1) - epsilon<T>())
{
// Linear interpolation
return qua<T, Q>(
mix(x.w, y.w, a),
mix(x.x, y.x, a),
mix(x.y, y.y, a),
mix(x.z, y.z, a));
}
else
{
// Essential Mathematics, page 467
T angle = acos(cosTheta);
return (sin((static_cast<T>(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle);
}
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> lerp(qua<T, Q> const& x, qua<T, Q> const& y, T a)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'lerp' only accept floating-point inputs");
// Lerp is only defined in [0, 1]
assert(a >= static_cast<T>(0));
assert(a <= static_cast<T>(1));
return x * (static_cast<T>(1) - a) + (y * a);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> slerp(qua<T, Q> const& x, qua<T, Q> const& y, T a)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'slerp' only accept floating-point inputs");
qua<T, Q> z = y;
T cosTheta = dot(x, y);
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if(cosTheta < static_cast<T>(0))
{
z = -y;
cosTheta = -cosTheta;
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > static_cast<T>(1) - epsilon<T>())
{
// Linear interpolation
return qua<T, Q>(
mix(x.w, z.w, a),
mix(x.x, z.x, a),
mix(x.y, z.y, a),
mix(x.z, z.z, a));
}
else
{
// Essential Mathematics, page 467
T angle = acos(cosTheta);
return (sin((static_cast<T>(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle);
}
}
template<typename T, typename S, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> slerp(qua<T, Q> const& x, qua<T, Q> const& y, T a, S k)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'slerp' only accept floating-point inputs");
GLM_STATIC_ASSERT(std::numeric_limits<S>::is_integer, "'slerp' only accept integer for spin count");
qua<T, Q> z = y;
T cosTheta = dot(x, y);
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < static_cast<T>(0))
{
z = -y;
cosTheta = -cosTheta;
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if (cosTheta > static_cast<T>(1) - epsilon<T>())
{
// Linear interpolation
return qua<T, Q>(
mix(x.w, z.w, a),
mix(x.x, z.x, a),
mix(x.y, z.y, a),
mix(x.z, z.z, a));
}
else
{
// Graphics Gems III, page 96
T angle = acos(cosTheta);
T phi = angle + k * glm::pi<T>();
return (sin(angle - a * phi)* x + sin(a * phi) * z) / sin(angle);
}
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> conjugate(qua<T, Q> const& q)
{
return qua<T, Q>(q.w, -q.x, -q.y, -q.z);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER qua<T, Q> inverse(qua<T, Q> const& q)
{
return conjugate(q) / dot(q, q);
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, bool, Q> isnan(qua<T, Q> const& q)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs");
return vec<4, bool, Q>(isnan(q.x), isnan(q.y), isnan(q.z), isnan(q.w));
}
template<typename T, qualifier Q>
GLM_FUNC_QUALIFIER vec<4, bool, Q> isinf(qua<T, Q> const& q)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isinf' only accept floating-point inputs");
return vec<4, bool, Q>(isinf(q.x), isinf(q.y), isinf(q.z), isinf(q.w));
}
}//namespace glm
#if GLM_CONFIG_SIMD == GLM_ENABLE
# include "quaternion_common_simd.inl"
#endif