2024-03-28 23:34:03 +01:00
# include <ArduPID.h>
2024-04-02 21:56:45 +02:00
ArduPID pitchCtrl ;
2024-03-28 23:34:03 +01:00
# define MOT_DX_STEP 19
# define MOT_DX_DIR 18
# define MOT_SX_STEP 17
# define MOT_SX_DIR 16
// Nema 17 make 1.8° per step. Using A4988 drivers, and 1/16th microstepping, it results in 0.1125° per step
constexpr double ANGLE_PER_STEP = 0.1125 ;
// Just used a kitchen scale, good enough
constexpr double WEIGHT = 0.961 ;
constexpr double WHEEL_RADIUS = 0.0475 ;
// Experimentally, the lowest pulse my steppers can handle without stalling + some leeway
constexpr double MAX_HALF_PERIOD = 75 ; // in microseconds
// Which means there is a maximum velocity achievable
constexpr double MAX_VELOCITY = 1000000 * WHEEL_RADIUS / ( 2 * MAX_HALF_PERIOD * ANGLE_PER_STEP ) * PI / 180 ;
// Derived and analytical model, linearized it and simulated in MATLAB.
// PID values are then calculated and verified by simulation in Simulink. I ain't calibrating a PID by hand on this robot
// I modified the ArduPID library to make it accept negative values for the parameters
constexpr double KP = - 50 ;
constexpr double KI = - 600 ;
constexpr double KD = 0.05 ;
// IMU little bit tilted
// TODO: Implement an outer control loop for angular velocity. But that requires encoders on the motors
// TODO: try to achieve it crudely by just using a PI controller on the velocity given by the PID balance controller
double setpoint = - 0.06 ;
double output = 0 ;
double input = 0 ;
double yaw { 0 } , pitch { 0 } , roll { 0 } ;
void setup ( ) {
Serial . begin ( 9600 ) ;
delay ( 1000 ) ;
setup_imu ( ) ;
pinMode ( MOT_DX_DIR , OUTPUT ) ;
pinMode ( MOT_SX_DIR , OUTPUT ) ;
// Just to signal it is working
pinMode ( LED_BUILTIN , OUTPUT ) ;
digitalWrite ( LED_BUILTIN , HIGH ) ;
// Let the initial error from madgwick filter discharge without affecting the integral term of the PID
unsigned long t = millis ( ) ;
while ( millis ( ) - t < 2000 ) {
update_imu ( ) ;
}
2024-04-02 21:56:45 +02:00
pitchCtrl . begin ( & input , & output , & setpoint , KP , KI , KD , P_ON_E , FORWARD ) ;
pitchCtrl . setOutputLimits ( - MAX_VELOCITY , MAX_VELOCITY ) ; // double of max torque motors can exhert
//pitchCtrl.setWindUpLimits(-10, 10);
pitchCtrl . setSampleTime ( 1 ) ;
pitchCtrl . start ( ) ;
2024-04-02 21:57:07 +02:00
digitalWrite ( LED_BUILTIN , LOW ) ;
2024-03-28 23:34:03 +01:00
}
void setup1 ( ) {
pinMode ( MOT_DX_STEP , OUTPUT ) ;
pinMode ( MOT_SX_STEP , OUTPUT ) ;
}
unsigned long last_time_motors = micros ( ) , current_time_motors = micros ( ) ;
bool b = true ;
// Such a long halfperiod means that the motors are not moving
uint32_t halfperiod1 = INT_MAX ;
void loop1 ( ) {
// TODO: handle the steppers using interrupt timers. The second core could be used for IMU processing, while the first one handles the different control loops
// Retrieve the half period value from core0. Non blocking call
if ( rp2040 . fifo . available ( ) ) rp2040 . fifo . pop_nb ( & halfperiod1 ) ;
current_time_motors = micros ( ) ;
if ( current_time_motors - last_time_motors > halfperiod1 ) {
// Half a pulse. Next cycle will be the rest
digitalWriteFast ( MOT_DX_STEP , b ) ;
digitalWriteFast ( MOT_SX_STEP , b ) ;
b = ! b ;
last_time_motors = current_time_motors ;
}
}
unsigned long last_time = millis ( ) , current_time = millis ( ) , time_diff ;
double frequency = 0 ;
unsigned long half_period0 = 0 ;
double velocity = 0 ;
void loop ( ) {
current_time = millis ( ) ;
time_diff = current_time - last_time ;
update_imu ( ) ;
// I also modified the ArduPID library to use compute as a boolean. If calculations were done, it returns true. If not enough time has elapsed, it returns false
2024-04-02 21:56:45 +02:00
if ( pitchCtrl . compute ( ) ) {
2024-03-28 23:34:03 +01:00
input = pitch ;
// Keeping it here
/*
double force_per_motor = output / WHEEL_RADIUS ;
double accel = force_per_motor / ( WEIGHT ) ;
velocity + = accel * time_diff * 0.001 ;
// anti-windup
velocity = constrain ( velocity , - MAX_VELOCITY , MAX_VELOCITY ) ; */
double tvelocity = output ;
if ( tvelocity < 0 ) {
digitalWriteFast ( MOT_DX_DIR , LOW ) ;
digitalWriteFast ( MOT_SX_DIR , LOW ) ;
tvelocity = - tvelocity ;
} else {
digitalWriteFast ( MOT_DX_DIR , HIGH ) ;
digitalWriteFast ( MOT_SX_DIR , HIGH ) ;
}
tvelocity = tvelocity * 180 / PI ;
frequency = tvelocity * 0.1125 / WHEEL_RADIUS ;
half_period0 = 1000000 / ( 2 * frequency ) ;
// Send the half period to core 1. Non blocking
rp2040 . fifo . push_nb ( half_period0 ) ;
// Some ugly logging I used in debugging, keeping in around
/*Serial.println(input);
Serial . print ( " | " ) ;
Serial . print ( output ) ;
Serial . print ( " | " ) ;
Serial . print ( accel ) ;
Serial . print ( " | " ) ;
Serial . print ( velocity ) ;
Serial . print ( " | " ) ;
Serial . print ( frequency ) ;
Serial . print ( " | " ) ;
Serial . println ( half_period0 ) ; */
last_time = current_time ;
}
}