Compare commits
No commits in common. "yawctrl" and "main" have entirely different histories.
|
@ -4,7 +4,7 @@
|
|||
|
||||
//#define PRINT_ANGLES
|
||||
//#define PRINT_QUAT
|
||||
// #define PERFORM_CALIBRATION //Comment to disable startup calibration
|
||||
#define PERFORM_CALIBRATION //Comment to disable startup calibration
|
||||
|
||||
#define IMU_ADDRESS 0x68 //Change to the address of the IMU
|
||||
MPU6050 IMU; //Change to the name of any supported IMU!
|
||||
|
@ -36,10 +36,26 @@ void setup_imu(){
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef PERFORM_CALIBRATION
|
||||
delay(1500);
|
||||
Serial.println("Keep IMU level.");
|
||||
delay(500);
|
||||
IMU.calibrateAccelGyro(&calib);
|
||||
delay(1500);
|
||||
Serial.println("Calibration done!");
|
||||
Serial.println("Accel biases X/Y/Z: ");
|
||||
Serial.print(calib.accelBias[0]);
|
||||
Serial.print(", ");
|
||||
Serial.print(calib.accelBias[1]);
|
||||
Serial.print(", ");
|
||||
Serial.println(calib.accelBias[2]);
|
||||
Serial.println("Gyro biases X/Y/Z: ");
|
||||
Serial.print(calib.gyroBias[0]);
|
||||
Serial.print(", ");
|
||||
Serial.print(calib.gyroBias[1]);
|
||||
Serial.print(", ");
|
||||
Serial.println(calib.gyroBias[2]);
|
||||
delay(500);
|
||||
IMU.init(calib, IMU_ADDRESS);
|
||||
#endif
|
||||
filter.begin(0.2f);
|
||||
|
|
|
@ -11,49 +11,29 @@ constexpr double ANGLE_PER_STEP = 0.1125;
|
|||
constexpr double WEIGHT = 0.961;
|
||||
constexpr double WHEEL_RADIUS = 0.0475;
|
||||
// Experimentally, the lowest pulse my steppers can handle without stalling + some leeway
|
||||
constexpr double MAX_HALF_PERIOD = 75; // in microseconds
|
||||
constexpr double MAX_HALF_PERIOD = 75; // in microseconds
|
||||
// Which means there is a maximum velocity achievable
|
||||
constexpr double MAX_VELOCITY = 1000000 * WHEEL_RADIUS / (2 * MAX_HALF_PERIOD * ANGLE_PER_STEP) * PI / 180;
|
||||
|
||||
constexpr double CONVERSION_FACTOR = 180 / WHEEL_RADIUS / PI;
|
||||
|
||||
// Derived and analytical model, linearized it and simulated in MATLAB.
|
||||
// PID values are then calculated and verified by simulation in Simulink. I ain't calibrating a PID by hand on this robot
|
||||
// I modified the ArduPID library to make it accept negative values for the parameters
|
||||
constexpr float KP = 42;
|
||||
constexpr float KI = KP * 10.8852;
|
||||
constexpr float KD = 0.3;
|
||||
|
||||
// PI constants for outer velocity control loop
|
||||
constexpr float KP_vel = 0.0065;
|
||||
constexpr float KI_vel = 0.0005;
|
||||
|
||||
constexpr float KP_yaw = 0.8;
|
||||
constexpr float KI_yaw = 0.06;
|
||||
|
||||
float angle_setpoint = 0.0;
|
||||
float angle_output = 0;
|
||||
float angle_input = 0;
|
||||
|
||||
float yaw_setpoint = 0.0;
|
||||
float yaw_output = 0;
|
||||
float yaw_input = 0;
|
||||
|
||||
float vel_setpoint = 0.0;
|
||||
float vel_input = 0.0;
|
||||
|
||||
constexpr double KP = 42;
|
||||
constexpr double KI = KP * 10.8852;
|
||||
constexpr double KD = 0.3;
|
||||
|
||||
// IMU little bit tilted
|
||||
// TODO: Implement an outer control loop for angular velocity. But that requires encoders on the motors
|
||||
// TODO: try to achieve it crudely by just using a PI controller on the velocity given by the PID balance controller
|
||||
float setpoint = 0.0;
|
||||
float output = 0;
|
||||
float input = 0;
|
||||
|
||||
float yaw{ 0 }, pitch{ 0 }, roll{ 0 };
|
||||
|
||||
|
||||
|
||||
QuickPID pitchCtrl(&pitch, &angle_output, &angle_setpoint, KP, KI, KD, pitchCtrl.pMode::pOnError, pitchCtrl.dMode::dOnMeas, pitchCtrl.iAwMode::iAwCondition, pitchCtrl.Action::reverse);
|
||||
// TODO: a little deadzone when the input is almost 0, just to avoid unnecessary "nervous" control and eventual oscillations
|
||||
QuickPID velCtrl(&angle_output, &angle_setpoint, &vel_setpoint, KP_vel, KI_vel, 0, velCtrl.pMode::pOnError, velCtrl.dMode::dOnMeas, velCtrl.iAwMode::iAwClamp, velCtrl.Action::direct);
|
||||
|
||||
QuickPID yawCtrl(&yaw, &yaw_output, &yaw_setpoint, KP_yaw, KI_yaw, 0, yawCtrl.pMode::pOnError, yawCtrl.dMode::dOnMeas, yawCtrl.iAwMode::iAwClamp, yawCtrl.Action::direct);
|
||||
|
||||
QuickPID pitchCtrl(&input, &output, &setpoint, KP, KI, KD, pitchCtrl.pMode::pOnError, pitchCtrl.dMode::dOnMeas, pitchCtrl.iAwMode::iAwCondition, pitchCtrl.Action::reverse);
|
||||
|
||||
void setup() {
|
||||
Serial.begin(9600);
|
||||
|
@ -61,14 +41,14 @@ void setup() {
|
|||
delay(1000);
|
||||
|
||||
setup_imu();
|
||||
|
||||
|
||||
// Just to signal it is working
|
||||
pinMode(LED_BUILTIN, OUTPUT);
|
||||
digitalWrite(LED_BUILTIN, HIGH);
|
||||
|
||||
// Let the initial error from madgwick filter discharge without affecting the integral term of the PID
|
||||
unsigned long t = millis();
|
||||
while (millis() - t < 2000) {
|
||||
while (millis() - t < 5000) {
|
||||
update_imu();
|
||||
}
|
||||
|
||||
|
@ -77,74 +57,54 @@ void setup() {
|
|||
pitchCtrl.SetMode(pitchCtrl.Control::automatic);
|
||||
pitchCtrl.SetSampleTimeUs(1000);
|
||||
|
||||
velCtrl.SetOutputLimits(-0.35, 0.35);
|
||||
velCtrl.SetMode(velCtrl.Control::automatic);
|
||||
velCtrl.SetSampleTimeUs(10000);
|
||||
|
||||
yawCtrl.SetOutputLimits(-MAX_VELOCITY*0.01, MAX_VELOCITY*0.01);
|
||||
yawCtrl.SetMode(yawCtrl.Control::automatic);
|
||||
yawCtrl.SetSampleTimeUs(10000);
|
||||
|
||||
digitalWrite(LED_BUILTIN, LOW);
|
||||
|
||||
yaw_setpoint = yaw;
|
||||
}
|
||||
|
||||
void setup1() {
|
||||
void setup1(){
|
||||
pinMode(MOT_DX_DIR, OUTPUT);
|
||||
pinMode(MOT_SX_DIR, OUTPUT);
|
||||
pinMode(MOT_SX_DIR, OUTPUT);
|
||||
|
||||
pinMode(MOT_DX_STEP, OUTPUT);
|
||||
pinMode(MOT_SX_STEP, OUTPUT);
|
||||
}
|
||||
|
||||
void loop1() {
|
||||
static bool sx_b = true, dx_b = true;
|
||||
static uint32_t last_time_sx = micros(), last_time_dx = micros(), current_time_motors = micros();
|
||||
unsigned long last_time_motors = micros(), current_time_motors = micros();
|
||||
bool b = true;
|
||||
// Such a long halfperiod means that the motors are not moving
|
||||
uint32_t t = INT_MAX;
|
||||
int32_t period = INT_MAX, halfperiod1 = INT_MAX;
|
||||
|
||||
void loop1(){
|
||||
// TODO: handle the steppers using interrupt timers. The second core could be used for IMU processing, while the first one handles the different control loops
|
||||
static int32_t tmotsx_period = INT_MAX, tmotdx_period = INT_MAX;
|
||||
static uint32_t motsx_period = INT_MAX, motdx_period = INT_MAX;
|
||||
|
||||
// Retrieve the half period value from core0. Non blocking call
|
||||
|
||||
if (rp2040.fifo.available() > 2) {
|
||||
uint32_t t;
|
||||
if(rp2040.fifo.available()) {
|
||||
rp2040.fifo.pop_nb(&t);
|
||||
tmotsx_period = (int32_t) t;
|
||||
rp2040.fifo.pop_nb(&t);
|
||||
tmotdx_period = (int32_t) t;
|
||||
}
|
||||
|
||||
int32_t period = (int32_t)t;
|
||||
|
||||
// Direction need to be changed during motor pulse
|
||||
// Doing it here unsure it happens at the correct time
|
||||
if (tmotsx_period > 0) {
|
||||
digitalWriteFast(MOT_SX_DIR, HIGH);
|
||||
motsx_period = (uint32_t)(tmotsx_period);
|
||||
} else {
|
||||
// Negative direction
|
||||
digitalWriteFast(MOT_SX_DIR, LOW);
|
||||
motsx_period = (uint32_t)(-tmotsx_period);
|
||||
}
|
||||
if (tmotdx_period > 0) {
|
||||
digitalWriteFast(MOT_DX_DIR, HIGH);
|
||||
motdx_period = (uint32_t)(tmotdx_period);
|
||||
} else {
|
||||
// Negative direction
|
||||
digitalWriteFast(MOT_DX_DIR, LOW);
|
||||
motdx_period = (uint32_t)(-tmotdx_period);
|
||||
// Direction need to be changed during motor pulse
|
||||
// Doing it here unsure it happens at the correct time
|
||||
if(period > 0){
|
||||
// Positivie direction
|
||||
digitalWriteFast(MOT_DX_DIR, HIGH);
|
||||
digitalWriteFast(MOT_SX_DIR, HIGH);
|
||||
halfperiod1 = (uint32_t)(period);
|
||||
}else{
|
||||
// Negative direction
|
||||
digitalWriteFast(MOT_DX_DIR, LOW);
|
||||
digitalWriteFast(MOT_SX_DIR, LOW);
|
||||
halfperiod1 = (uint32_t)(-period);
|
||||
}
|
||||
}
|
||||
|
||||
current_time_motors = micros();
|
||||
if (current_time_motors - last_time_sx > motsx_period) {
|
||||
if(current_time_motors - last_time_motors > halfperiod1){
|
||||
// Half a pulse. Next cycle will be the rest
|
||||
digitalWriteFast(MOT_SX_STEP, sx_b);
|
||||
sx_b = !sx_b;
|
||||
last_time_sx = current_time_motors;
|
||||
}
|
||||
if (current_time_motors - last_time_dx > motdx_period) {
|
||||
// Half a pulse. Next cycle will be the rest
|
||||
digitalWriteFast(MOT_DX_STEP, dx_b);
|
||||
dx_b = !dx_b;
|
||||
last_time_dx = current_time_motors;
|
||||
digitalWriteFast(MOT_DX_STEP, b);
|
||||
digitalWriteFast(MOT_SX_STEP, b);
|
||||
b = !b;
|
||||
last_time_motors = current_time_motors;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -157,20 +117,19 @@ uint32_t current_time = millis(), last_time = millis();
|
|||
void loop() {
|
||||
update_imu();
|
||||
|
||||
velCtrl.Compute();
|
||||
yawCtrl.Compute();
|
||||
input = pitch;
|
||||
//if(abs(input -setpoint) <= 0.01) input = setpoint;
|
||||
|
||||
// I also modified the ArduPID library to use compute as a boolean. If calculations were done, it returns true. If not enough time has elapsed, it returns false
|
||||
if(pitchCtrl.Compute()){
|
||||
|
||||
if (pitchCtrl.Compute()) {
|
||||
double tvelocity = angle_output;
|
||||
double tvelocity = output;
|
||||
tvelocity = tvelocity / WHEEL_RADIUS * 180 / PI;
|
||||
frequency = tvelocity * 0.1125;
|
||||
half_period0 = 1000000 / (2*frequency);
|
||||
|
||||
frequency = (tvelocity + yaw_output) * CONVERSION_FACTOR * ANGLE_PER_STEP ;
|
||||
half_period0 = 1000000 / (2 * frequency);
|
||||
// Send the half period of one motor to core 1. Non blocking
|
||||
rp2040.fifo.push_nb(half_period0);
|
||||
|
||||
frequency = (tvelocity - yaw_output) * CONVERSION_FACTOR * ANGLE_PER_STEP ;
|
||||
half_period0 = 1000000 / (2 * frequency);
|
||||
// Send the half period of the other motor to core 1. Non blocking
|
||||
// Send the half period to core 1. Non blocking
|
||||
rp2040.fifo.push_nb(half_period0);
|
||||
}
|
||||
|
||||
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue