Compare commits

..

No commits in common. "yawctrl" and "main" have entirely different histories.

6 changed files with 74 additions and 99 deletions

View File

@ -4,7 +4,7 @@
//#define PRINT_ANGLES
//#define PRINT_QUAT
// #define PERFORM_CALIBRATION //Comment to disable startup calibration
#define PERFORM_CALIBRATION //Comment to disable startup calibration
#define IMU_ADDRESS 0x68 //Change to the address of the IMU
MPU6050 IMU; //Change to the name of any supported IMU!
@ -36,10 +36,26 @@ void setup_imu(){
}
}
#ifdef PERFORM_CALIBRATION
delay(1500);
Serial.println("Keep IMU level.");
delay(500);
IMU.calibrateAccelGyro(&calib);
delay(1500);
Serial.println("Calibration done!");
Serial.println("Accel biases X/Y/Z: ");
Serial.print(calib.accelBias[0]);
Serial.print(", ");
Serial.print(calib.accelBias[1]);
Serial.print(", ");
Serial.println(calib.accelBias[2]);
Serial.println("Gyro biases X/Y/Z: ");
Serial.print(calib.gyroBias[0]);
Serial.print(", ");
Serial.print(calib.gyroBias[1]);
Serial.print(", ");
Serial.println(calib.gyroBias[2]);
delay(500);
IMU.init(calib, IMU_ADDRESS);
#endif
filter.begin(0.2f);

View File

@ -11,49 +11,29 @@ constexpr double ANGLE_PER_STEP = 0.1125;
constexpr double WEIGHT = 0.961;
constexpr double WHEEL_RADIUS = 0.0475;
// Experimentally, the lowest pulse my steppers can handle without stalling + some leeway
constexpr double MAX_HALF_PERIOD = 75; // in microseconds
constexpr double MAX_HALF_PERIOD = 75; // in microseconds
// Which means there is a maximum velocity achievable
constexpr double MAX_VELOCITY = 1000000 * WHEEL_RADIUS / (2 * MAX_HALF_PERIOD * ANGLE_PER_STEP) * PI / 180;
constexpr double CONVERSION_FACTOR = 180 / WHEEL_RADIUS / PI;
// Derived and analytical model, linearized it and simulated in MATLAB.
// PID values are then calculated and verified by simulation in Simulink. I ain't calibrating a PID by hand on this robot
// I modified the ArduPID library to make it accept negative values for the parameters
constexpr float KP = 42;
constexpr float KI = KP * 10.8852;
constexpr float KD = 0.3;
// PI constants for outer velocity control loop
constexpr float KP_vel = 0.0065;
constexpr float KI_vel = 0.0005;
constexpr float KP_yaw = 0.8;
constexpr float KI_yaw = 0.06;
float angle_setpoint = 0.0;
float angle_output = 0;
float angle_input = 0;
float yaw_setpoint = 0.0;
float yaw_output = 0;
float yaw_input = 0;
float vel_setpoint = 0.0;
float vel_input = 0.0;
constexpr double KP = 42;
constexpr double KI = KP * 10.8852;
constexpr double KD = 0.3;
// IMU little bit tilted
// TODO: Implement an outer control loop for angular velocity. But that requires encoders on the motors
// TODO: try to achieve it crudely by just using a PI controller on the velocity given by the PID balance controller
float setpoint = 0.0;
float output = 0;
float input = 0;
float yaw{ 0 }, pitch{ 0 }, roll{ 0 };
QuickPID pitchCtrl(&pitch, &angle_output, &angle_setpoint, KP, KI, KD, pitchCtrl.pMode::pOnError, pitchCtrl.dMode::dOnMeas, pitchCtrl.iAwMode::iAwCondition, pitchCtrl.Action::reverse);
// TODO: a little deadzone when the input is almost 0, just to avoid unnecessary "nervous" control and eventual oscillations
QuickPID velCtrl(&angle_output, &angle_setpoint, &vel_setpoint, KP_vel, KI_vel, 0, velCtrl.pMode::pOnError, velCtrl.dMode::dOnMeas, velCtrl.iAwMode::iAwClamp, velCtrl.Action::direct);
QuickPID yawCtrl(&yaw, &yaw_output, &yaw_setpoint, KP_yaw, KI_yaw, 0, yawCtrl.pMode::pOnError, yawCtrl.dMode::dOnMeas, yawCtrl.iAwMode::iAwClamp, yawCtrl.Action::direct);
QuickPID pitchCtrl(&input, &output, &setpoint, KP, KI, KD, pitchCtrl.pMode::pOnError, pitchCtrl.dMode::dOnMeas, pitchCtrl.iAwMode::iAwCondition, pitchCtrl.Action::reverse);
void setup() {
Serial.begin(9600);
@ -61,14 +41,14 @@ void setup() {
delay(1000);
setup_imu();
// Just to signal it is working
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
// Let the initial error from madgwick filter discharge without affecting the integral term of the PID
unsigned long t = millis();
while (millis() - t < 2000) {
while (millis() - t < 5000) {
update_imu();
}
@ -77,74 +57,54 @@ void setup() {
pitchCtrl.SetMode(pitchCtrl.Control::automatic);
pitchCtrl.SetSampleTimeUs(1000);
velCtrl.SetOutputLimits(-0.35, 0.35);
velCtrl.SetMode(velCtrl.Control::automatic);
velCtrl.SetSampleTimeUs(10000);
yawCtrl.SetOutputLimits(-MAX_VELOCITY*0.01, MAX_VELOCITY*0.01);
yawCtrl.SetMode(yawCtrl.Control::automatic);
yawCtrl.SetSampleTimeUs(10000);
digitalWrite(LED_BUILTIN, LOW);
yaw_setpoint = yaw;
}
void setup1() {
void setup1(){
pinMode(MOT_DX_DIR, OUTPUT);
pinMode(MOT_SX_DIR, OUTPUT);
pinMode(MOT_SX_DIR, OUTPUT);
pinMode(MOT_DX_STEP, OUTPUT);
pinMode(MOT_SX_STEP, OUTPUT);
}
void loop1() {
static bool sx_b = true, dx_b = true;
static uint32_t last_time_sx = micros(), last_time_dx = micros(), current_time_motors = micros();
unsigned long last_time_motors = micros(), current_time_motors = micros();
bool b = true;
// Such a long halfperiod means that the motors are not moving
uint32_t t = INT_MAX;
int32_t period = INT_MAX, halfperiod1 = INT_MAX;
void loop1(){
// TODO: handle the steppers using interrupt timers. The second core could be used for IMU processing, while the first one handles the different control loops
static int32_t tmotsx_period = INT_MAX, tmotdx_period = INT_MAX;
static uint32_t motsx_period = INT_MAX, motdx_period = INT_MAX;
// Retrieve the half period value from core0. Non blocking call
if (rp2040.fifo.available() > 2) {
uint32_t t;
if(rp2040.fifo.available()) {
rp2040.fifo.pop_nb(&t);
tmotsx_period = (int32_t) t;
rp2040.fifo.pop_nb(&t);
tmotdx_period = (int32_t) t;
}
int32_t period = (int32_t)t;
// Direction need to be changed during motor pulse
// Doing it here unsure it happens at the correct time
if (tmotsx_period > 0) {
digitalWriteFast(MOT_SX_DIR, HIGH);
motsx_period = (uint32_t)(tmotsx_period);
} else {
// Negative direction
digitalWriteFast(MOT_SX_DIR, LOW);
motsx_period = (uint32_t)(-tmotsx_period);
}
if (tmotdx_period > 0) {
digitalWriteFast(MOT_DX_DIR, HIGH);
motdx_period = (uint32_t)(tmotdx_period);
} else {
// Negative direction
digitalWriteFast(MOT_DX_DIR, LOW);
motdx_period = (uint32_t)(-tmotdx_period);
// Direction need to be changed during motor pulse
// Doing it here unsure it happens at the correct time
if(period > 0){
// Positivie direction
digitalWriteFast(MOT_DX_DIR, HIGH);
digitalWriteFast(MOT_SX_DIR, HIGH);
halfperiod1 = (uint32_t)(period);
}else{
// Negative direction
digitalWriteFast(MOT_DX_DIR, LOW);
digitalWriteFast(MOT_SX_DIR, LOW);
halfperiod1 = (uint32_t)(-period);
}
}
current_time_motors = micros();
if (current_time_motors - last_time_sx > motsx_period) {
if(current_time_motors - last_time_motors > halfperiod1){
// Half a pulse. Next cycle will be the rest
digitalWriteFast(MOT_SX_STEP, sx_b);
sx_b = !sx_b;
last_time_sx = current_time_motors;
}
if (current_time_motors - last_time_dx > motdx_period) {
// Half a pulse. Next cycle will be the rest
digitalWriteFast(MOT_DX_STEP, dx_b);
dx_b = !dx_b;
last_time_dx = current_time_motors;
digitalWriteFast(MOT_DX_STEP, b);
digitalWriteFast(MOT_SX_STEP, b);
b = !b;
last_time_motors = current_time_motors;
}
}
@ -157,20 +117,19 @@ uint32_t current_time = millis(), last_time = millis();
void loop() {
update_imu();
velCtrl.Compute();
yawCtrl.Compute();
input = pitch;
//if(abs(input -setpoint) <= 0.01) input = setpoint;
// I also modified the ArduPID library to use compute as a boolean. If calculations were done, it returns true. If not enough time has elapsed, it returns false
if(pitchCtrl.Compute()){
if (pitchCtrl.Compute()) {
double tvelocity = angle_output;
double tvelocity = output;
tvelocity = tvelocity / WHEEL_RADIUS * 180 / PI;
frequency = tvelocity * 0.1125;
half_period0 = 1000000 / (2*frequency);
frequency = (tvelocity + yaw_output) * CONVERSION_FACTOR * ANGLE_PER_STEP ;
half_period0 = 1000000 / (2 * frequency);
// Send the half period of one motor to core 1. Non blocking
rp2040.fifo.push_nb(half_period0);
frequency = (tvelocity - yaw_output) * CONVERSION_FACTOR * ANGLE_PER_STEP ;
half_period0 = 1000000 / (2 * frequency);
// Send the half period of the other motor to core 1. Non blocking
// Send the half period to core 1. Non blocking
rp2040.fifo.push_nb(half_period0);
}
}

Binary file not shown.

Binary file not shown.