thesis/control_act.m

161 lines
5.0 KiB
Matlab
Raw Normal View History

function [u, ut, uc, U_corr_history] = control_act(t, q, sim_data)
dc = decouple_matrix(q, sim_data.b);
ut = utrack(t, q, sim_data);
[uc, U_corr_history] = ucorr(t, q, sim_data);
2024-07-24 11:49:34 +02:00
u = dc * (ut + uc);
% saturation
u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
2024-07-24 11:49:34 +02:00
end
2024-07-12 19:14:53 +02:00
function [u_corr, U_corr_history] = ucorr(t, q, sim_data)
pred_hor = sim_data.PREDICTION_HORIZON;
SATURATION = sim_data.SATURATION;
PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE;
tc = sim_data.tc;
if eq(pred_hor, 0)
2024-07-24 11:49:34 +02:00
u_corr = zeros(2,1);
U_corr_history = zeros(2,1,sim_data.PREDICTION_HORIZON);
2024-07-24 11:49:34 +02:00
return
end
2024-07-24 11:49:34 +02:00
%disp('start of simulation')
q_prec = q;
q_pred=zeros(3,1, pred_hor);
u_track_pred=zeros(2,1, pred_hor+1);
T_inv_pred=zeros(2,2, pred_hor+1);
2024-07-24 11:49:34 +02:00
% for each step in the prediction horizon, integrate the system to
% predict its future state
2024-07-12 19:14:53 +02:00
2024-07-24 11:49:34 +02:00
% the first step takes in q_k-1 and calculates q_new = q_k
% this means that u_track_pred(:,:,1) will contain u_track_k-1 and will not
2024-07-24 11:49:34 +02:00
% contain u_track_k+C
for k = 1:pred_hor
2024-07-24 11:49:34 +02:00
% start from the old (known) state
% calculate the inputs, based on the old state
% u_corr is the prediction done at some time in the past, as found in U_corr_history
u_corr_ = sim_data.U_corr_history(:, :, k);
2024-07-24 11:49:34 +02:00
% u_track can be calculated from q
t_ = t + tc*(k-1);
u_track_ = utrack(t_, q_prec, sim_data);
2024-07-24 11:49:34 +02:00
T_inv = decouple_matrix(q_prec, sim_data.b);
2024-07-24 11:49:34 +02:00
u_ = T_inv * (u_corr_ + u_track_);
% calc the state integrating with euler
x_new = q_prec(1) + tc*u_(1) * cos(q_prec(3));
y_new = q_prec(2) + tc*u_(1) * sin(q_prec(3));
theta_new = q_prec(3) + tc*u_(2);
q_new = [x_new; y_new; theta_new];
% save history
q_pred(:,:,k) = q_new;
u_track_pred(:,:,k) = u_track_;
T_inv_pred(:,:,k) = T_inv;
% Prepare old state for next iteration
q_prec = q_new;
end
%disp('end of simulation')
%q_prec
2024-07-16 10:58:00 +02:00
2024-07-24 11:49:34 +02:00
% calculate u_track_k+C
u_track_pred(:,:,pred_hor+1) = utrack(t+tc*pred_hor, q_prec, sim_data);
2024-07-24 11:49:34 +02:00
% remove u_track_k-1
u_track_pred = u_track_pred(:,:,2:end);
T_inv_pred(:,:,pred_hor+1) = decouple_matrix(q_prec, sim_data.b);
2024-07-24 11:49:34 +02:00
T_inv_pred = T_inv_pred(:,:,2:end);
%disp('end of patching data up')
%{
Now setup the qp problem
It needs:
- Unknowns, u_corr at each timestep. Will be encoded as a vector of
vectors, in which every two elements is a u_j
i.e. (u_1; u_2; u_3; ...; u_C) = (v_1; w_1; v_2, w_2; v_3, w_3; ...
; v_C, w_C)
It is essential that the vector stays a column, so that u'u is the
sum of the squared norms of each u_j
- Box constraints: a constraint for each timestep in the horizon.
Calculated using the predicted state and inputs. They need to be
put in matrix (Ax <= b) form
%}
% box constrains
% A becomes sort of block-diagonal
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON*2 (number of
% vectors in u_corr times the number of elements [2] in each vector)
A_max_elems = pred_hor * 2 * 2;
2024-07-24 11:49:34 +02:00
A_deq = [];
b_deq = [];
for k=1:pred_hor
2024-07-24 11:49:34 +02:00
T_inv = T_inv_pred(:,:,k);
u_track = u_track_pred(:,:,k);
% [T_inv; -T_inv] is a 4x2 matrix
n_zeros_before = (k-1) * 4;
n_zeros_after = A_max_elems - n_zeros_before - 4;
zeros_before = zeros(n_zeros_before, 2);
zeros_after = zeros(n_zeros_after, 2);
column = [zeros_before; T_inv; -T_inv; zeros_after];
A_deq = [A_deq, column];
2024-07-16 10:58:00 +02:00
d = T_inv*u_track;
2024-07-24 11:49:34 +02:00
b_deq = [b_deq; SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE - d;
2024-07-16 10:58:00 +02:00
SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE + d];
end
2024-07-24 11:49:34 +02:00
%A_deq
%b_deq
% unknowns
% squared norm of u_corr. H must be identity,
% PREDICTION_HORIZON*size(u_corr)
H = eye(pred_hor*2)*2;
2024-07-24 11:49:34 +02:00
% no linear terms
f = zeros(pred_hor*2, 1);
2024-07-12 19:14:53 +02:00
2024-07-24 11:49:34 +02:00
% solve qp problem
options = optimoptions('quadprog', 'Display', 'off');
U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
% reshape the vector of vectors to be an array, each element being
% u_corr_j as a 2x1 vector
U_corr_history = reshape(U_corr, [2,1,pred_hor]);
%sim_data.U_corr_history = U_corr_history;
u_corr=sim_data.U_corr_history(:,:, 1);
2024-07-24 11:49:34 +02:00
end
function u_track = utrack(t, q, sim_data)
ref_s = double(subs(sim_data.ref, t));
dref_s = double(subs(sim_data.dref, t));
2024-07-24 11:49:34 +02:00
f = feedback(q, sim_data.b);
2024-07-24 11:49:34 +02:00
err = ref_s - f;
u_track = dref_s + sim_data.K*err;
2024-07-12 19:14:53 +02:00
end
function q_track = feedback(q, b)
2024-07-24 11:49:34 +02:00
q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
end
function T_inv = decouple_matrix(q, b)
2024-07-24 11:49:34 +02:00
theta = q(3);
st = sin(theta);
ct = cos(theta);
T_inv = [ct, st; -st/b, ct/b];
2024-07-12 19:14:53 +02:00
end