multi-step MPC

seems to be working?
master
EmaMaker 2024-07-24 11:49:34 +02:00
parent 02fdac42e3
commit ec8b2dcecb
4 changed files with 176 additions and 70 deletions

View File

@ -1,69 +1,169 @@
function u = control_act(t, q)
global ref dref K b SATURATION PREDICTION_SATURATION_TOLERANCE USE_PREDICTION PREDICTION_STEPS
ref_s = double(subs(ref, t));
dref_s = double(subs(dref, t));
global SATURATION
err = ref_s - feedback(q);
u_track = dref_s + K*err;
theta = q(3);
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
u = zeros(2,1);
if USE_PREDICTION==true
% 1-step prediction
% quadprog solves the problem in the form
% min 1/2 x'Hx +f'x
% where x is u_corr. Since u_corr is (v_corr; w_corr), and I want
% to minimize u'u (norm squared of u_corr itself) H must be
% the identity matrix of size 2
H = eye(2)*2;
% no linear of constant terms, so
f = [];
% and there are box constraints on the saturation, as upper/lower
% bounds
%T = inv(T_inv);
%lb = -T*saturation - u_track;
%ub = T*saturation - u_track;
% matlab says this is a more efficient way of doing
% inv(T_inv)*saturation
%lb = -T_inv\saturation - u_track;
%ub = T_inv\saturation - u_track;
% Resolve box constraints as two inequalities
A_deq = [T_inv; -T_inv];
d = T_inv*u_track;
b_deq = [SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE - d;
SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE + d];
% solve the problem
% no <= constraints
% no equality constraints
% only upper/lower bound constraints
options = optimoptions('quadprog', 'Display', 'off');
u_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
u = T_inv * (u_track + u_corr);
global tu uu
tu = [tu, t];
uu = [uu, u_corr];
else
u = T_inv * u_track;
end
dc = decouple_matrix(q);
ut = utrack(t,q);
uc = ucorr(t,q);
u = dc * (ut + uc);
% saturation
u = min(SATURATION, max(-SATURATION, u));
end
function u_corr = ucorr(t,q)
global SATURATION PREDICTION_SATURATION_TOLERANCE PREDICTION_HORIZON tc
if eq(PREDICTION_HORIZON, 0)
u_corr = zeros(2,1);
return
end
persistent U_corr_history;
if isempty(U_corr_history)
U_corr_history = zeros(2, 1, PREDICTION_HORIZON);
end
%disp('start of simulation')
q_prec = q;
%q_pred = [];
%u_track_pred = [];
%t_inv_pred = [];
q_pred=zeros(3,1, PREDICTION_HORIZON);
u_track_pred=zeros(2,1, PREDICTION_HORIZON+1);
T_inv_pred=zeros(2,2, PREDICTION_HORIZON+1);
% for each step in the prediction horizon, integrate the system to
% predict its future state
% the first step takes in q_k-1 and calculates q_new = q_k
% this means that u_track_pred will contain u_track_k-1 and will not
% contain u_track_k+C
for k = 1:PREDICTION_HORIZON
% start from the old (known) state
% calculate the inputs, based on the old state
% u_corr is the prediction done at some time in the past, as found in U_corr_history
u_corr_ = U_corr_history(:, :, k);
% u_track can be calculated from q
t_ = t + tc*(k-1);
u_track_ = utrack(t_, q_prec);
T_inv = decouple_matrix(q_prec);
u_ = T_inv * (u_corr_ + u_track_);
% calc the state integrating with euler
x_new = q_prec(1) + tc*u_(1) * cos(q_prec(3));
y_new = q_prec(2) + tc*u_(1) * sin(q_prec(3));
theta_new = q_prec(3) + tc*u_(2);
q_new = [x_new; y_new; theta_new];
% save history
q_pred(:,:,k) = q_new;
u_track_pred(:,:,k) = u_track_;
T_inv_pred(:,:,k) = T_inv;
% Prepare old state for next iteration
q_prec = q_new;
end
%disp('end of simulation')
%q_prec
% calculate u_track_k+C
u_track_pred(:,:,PREDICTION_HORIZON+1) = utrack(t+tc*PREDICTION_HORIZON, q_prec);
% remove u_track_k-1
u_track_pred = u_track_pred(:,:,2:end);
T_inv_pred(:,:,PREDICTION_HORIZON+1) = decouple_matrix(q_prec);
T_inv_pred = T_inv_pred(:,:,2:end);
%disp('end of patching data up')
%{
Now setup the qp problem
It needs:
- Unknowns, u_corr at each timestep. Will be encoded as a vector of
vectors, in which every two elements is a u_j
i.e. (u_1; u_2; u_3; ...; u_C) = (v_1; w_1; v_2, w_2; v_3, w_3; ...
; v_C, w_C)
It is essential that the vector stays a column, so that u'u is the
sum of the squared norms of each u_j
- Box constraints: a constraint for each timestep in the horizon.
Calculated using the predicted state and inputs. They need to be
put in matrix (Ax <= b) form
%}
% box constrains
% A becomes sort of block-diagonal
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON*2 (number of
% vectors in u_corr times the number of elements [2] in each vector)
A_max_elems = PREDICTION_HORIZON * 2 * 2;
A_deq = [];
b_deq = [];
for k=1:PREDICTION_HORIZON
T_inv = T_inv_pred(:,:,k);
u_track = u_track_pred(:,:,k);
% [T_inv; -T_inv] is a 4x2 matrix
n_zeros_before = (k-1) * 4;
n_zeros_after = A_max_elems - n_zeros_before - 4;
zeros_before = zeros(n_zeros_before, 2);
zeros_after = zeros(n_zeros_after, 2);
column = [zeros_before; T_inv; -T_inv; zeros_after];
A_deq = [A_deq, column];
d = T_inv*u_track;
b_deq = [b_deq; SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE - d;
SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE + d];
end
%A_deq
%b_deq
% unknowns
% squared norm of u_corr. H must be identity,
% PREDICTION_HORIZON*size(u_corr)
H = eye(PREDICTION_HORIZON*2)*2;
% no linear terms
f = zeros(PREDICTION_HORIZON*2, 1);
% solve qp problem
options = optimoptions('quadprog', 'Display', 'off');
U_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
% reshape the vector of vectors to be an array, each element being
% u_corr_j as a 2x1 vector
U_corr_history = reshape(U_corr, [2,1,PREDICTION_HORIZON]);
u_corr=U_corr_history(:,:, 1);
end
function u_track = utrack(t, q)
global ref dref K
ref_s = double(subs(ref, t));
dref_s = double(subs(dref, t));
f = feedback(q);
err = ref_s - f;
u_track = dref_s + K*err;
end
function q_track = feedback(q)
global b
q_track = [ q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
end
function T_inv = decouple_matrix(q)
global b
theta = q(3);
st = sin(theta);
ct = cos(theta);
T_inv = [ct, st; -st/b, ct/b];
end

View File

@ -3,13 +3,13 @@ clear all
close all
%% global variables
global q0 ref dref b K SATURATION tc tfin USE_PREDICTION PREDICTION_STEP PREDICTION_SATURATION_TOLERANCE;
global q0 ref dref b tc K SATURATION tc tfin USE_PREDICTION PREDICTION_HORIZON PREDICTION_SATURATION_TOLERANCE;
%% variables
TRAJECTORY = 6
INITIAL_CONDITIONS = 1
USE_PREDICTION = false
PREDICTION_STEPS = 1
PREDICTION_HORIZON = 5
% distance from the center of the unicycle to the point being tracked
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
% minore l'errore
@ -17,6 +17,7 @@ b = 0.2
% proportional gain
K = eye(2)*2
tc = 0.1
tfin=30
% saturation
@ -37,20 +38,25 @@ q0 = set_initial_conditions(INITIAL_CONDITIONS)
global tu uu
figure(1)
USE_PREDICTION = false;
[t, q, ref_t, U] = simulate_discr(tfin, 0.1);
PREDICTION_HORIZON = 0;
[t, q, ref_t, U] = simulate_discr(tfin);
plot_results(t, q, ref_t, U);
figure(2)
USE_PREDICTION = true;
[t1, q1, ref_t1, U1] = simulate_discr(tfin, 0.1);
PREDICTION_HORIZON = 1;
[t1, q1, ref_t1, U1] = simulate_discr(tfin);
plot_results(t1, q1, ref_t1, U1);
figure(3)
subplot(1, 2, 1)
plot(tu, uu(1, :))
subplot(1, 2, 2)
plot(tu, uu(2, :))
PREDICTION_HORIZON = 2;
[t2, q2, ref_t2, U2] = simulate_discr(tfin);
plot_results(t2, q2, ref_t2, U2);
%figure(3)
%subplot(1, 2, 1)
%plot(tu, uu(1, :))
%subplot(1, 2, 2)
%plot(tu, uu(2, :))
%plot_results(t, x-x1, ref_t-ref_t1, U-U1);
@ -58,8 +64,8 @@ plot(tu, uu(2, :))
%% FUNCTION DECLARATIONS
% Discrete-time simulation
function [t, q, ref_t, U] = simulate_discr(tfin, tc)
global ref q0 u_discr
function [t, q, ref_t, U] = simulate_discr(tfin)
global ref q0 u_discr tc
steps = tfin/tc

BIN
tesiema.mlx Normal file

Binary file not shown.

Binary file not shown.