initial simulations
model a unicycle with exact i/o linearization. Plot the desired trajectory on each axis and the one took by the robotmaster
commit
10fa0382a6
|
@ -0,0 +1,8 @@
|
|||
function x0 = set_initial_conditions(i)
|
||||
switch i
|
||||
case 0
|
||||
x0 = [0; 0; 0]
|
||||
case 1
|
||||
x0 = [0; 0; PI]
|
||||
end
|
||||
end
|
|
@ -0,0 +1,20 @@
|
|||
function [ref, dref] = set_trajectory(i)
|
||||
syms s
|
||||
|
||||
switch i
|
||||
case 0
|
||||
% a straigth line trajectory at v=0.5m/s
|
||||
xref = 0.5*s;
|
||||
yref = 0;
|
||||
case 1
|
||||
% a straigth line trajectory at v=10 m/s
|
||||
xref = 10*s;
|
||||
yref = 0;
|
||||
case 2
|
||||
xref = 5*cos(s);
|
||||
yref = 5*sin(s);
|
||||
end
|
||||
|
||||
ref = [xref; yref];
|
||||
dref = diff(ref, s);
|
||||
end
|
|
@ -0,0 +1,40 @@
|
|||
function [x, u_] = sistema(t, x)
|
||||
global ref dref K b saturation U tc
|
||||
|
||||
ref_s = double(subs(ref, t));
|
||||
dref_s = double(subs(dref, t));
|
||||
|
||||
|
||||
err = ref_s - feedback(x);
|
||||
u_nom = dref_s + K*err;
|
||||
|
||||
theta = x(3);
|
||||
|
||||
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
|
||||
|
||||
u = T_inv * u_nom;
|
||||
|
||||
% saturation
|
||||
u = min(saturation, max(-saturation, u));
|
||||
|
||||
i = int8(1.5 + t/tc);
|
||||
% save input
|
||||
U(i, :) = reshape(u, [1, 2]);
|
||||
|
||||
x = unicycle(t, x, u);
|
||||
end
|
||||
|
||||
function dx = unicycle(t, x, u)
|
||||
% u is (v;w)
|
||||
% x is (x; y; theta)
|
||||
theta = x(3);
|
||||
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
|
||||
dx = G_x*u;
|
||||
end
|
||||
|
||||
function x_track = feedback(x)
|
||||
global b
|
||||
x_track = [ x(1) + b*cos(x(3)); x(2) + b*sin(x(3)) ];
|
||||
end
|
||||
|
||||
|
|
@ -0,0 +1,49 @@
|
|||
clc
|
||||
clear all
|
||||
close all
|
||||
|
||||
global x0 ref dref b K saturation
|
||||
|
||||
TRAJECTORY = 0
|
||||
INITIAL_CONDITIONS = 0
|
||||
% distance from the center of the unicycle to the point being tracked
|
||||
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
|
||||
% minore l'errore
|
||||
b = 0.2
|
||||
% proportional gain
|
||||
K = eye(2)*2
|
||||
% saturation
|
||||
saturation = [5; 0.2];
|
||||
|
||||
|
||||
% initial state
|
||||
% In order, [x, y, theta]
|
||||
x0 = set_initial_conditions(INITIAL_CONDITIONS)
|
||||
% trajectory to track
|
||||
[ref, dref] = set_trajectory(TRAJECTORY)
|
||||
|
||||
|
||||
% simulation time
|
||||
tspan = 0:0.1:10;
|
||||
% execute simulation
|
||||
|
||||
[t, x] = ode45(@sistema, tspan, x0)
|
||||
|
||||
% plot results
|
||||
ref_t = reshape(double(subs(ref, t)), [101,2]);
|
||||
|
||||
subplot(3,2,1)
|
||||
hold on
|
||||
plot(t, ref_t(:, 1));
|
||||
plot(t, x(:, 1));
|
||||
legend()
|
||||
subplot(3,2,2)
|
||||
plot(t, ref_t(:, 1) - x(:, 1));
|
||||
subplot(3,2,3)
|
||||
hold on
|
||||
plot(t, ref_t(:, 2));
|
||||
plot(t, x(:, 2));
|
||||
legend()
|
||||
subplot(3,2,4)
|
||||
plot(t, ref_t(:, 2) - x(:, 2));
|
||||
|
Loading…
Reference in New Issue