1-step mpc
parent
c79a8744b2
commit
44f65aed77
|
@ -1,22 +1,64 @@
|
||||||
function u = control_act(t, x)
|
function u = control_act(t, x)
|
||||||
|
global ref dref K b SATURATION PREDICTION_SATURATION_TOLERANCE USE_PREDICTION PREDICTION_STEPS
|
||||||
global ref dref K b saturation
|
|
||||||
|
|
||||||
ref_s = double(subs(ref, t));
|
ref_s = double(subs(ref, t));
|
||||||
dref_s = double(subs(dref, t));
|
dref_s = double(subs(dref, t));
|
||||||
|
|
||||||
|
|
||||||
err = ref_s - feedback(x);
|
err = ref_s - feedback(x);
|
||||||
u_nom = dref_s + K*err;
|
u_track = dref_s + K*err;
|
||||||
|
|
||||||
theta = x(3);
|
theta = x(3);
|
||||||
|
|
||||||
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
|
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
|
||||||
|
|
||||||
u = T_inv * ( u_nom );
|
u = zeros(2,1);
|
||||||
|
if USE_PREDICTION==true
|
||||||
|
% 1-step prediction
|
||||||
|
|
||||||
|
% quadprog solves the problem in the form
|
||||||
|
% min 1/2 x'Hx +f'x
|
||||||
|
% where x is u_corr. Since u_corr is (v_corr; w_corr), and I want
|
||||||
|
% to minimize u'u (norm squared of the function itself) H must be
|
||||||
|
% the identity matrix of size 2
|
||||||
|
H = eye(2)*2;
|
||||||
|
% no linear of constant terms, so
|
||||||
|
f = [];
|
||||||
|
|
||||||
|
% and there are box constraints on the saturation, as upper/lower
|
||||||
|
% bounds
|
||||||
|
%T = inv(T_inv);
|
||||||
|
%lb = -T*saturation - u_track;
|
||||||
|
%ub = T*saturation - u_track;
|
||||||
|
% matlab says this is a more efficient way of doing
|
||||||
|
% inv(T_inv)*saturation
|
||||||
|
%lb = -T_inv\saturation - u_track;
|
||||||
|
%ub = T_inv\saturation - u_track;
|
||||||
|
|
||||||
|
% Resolve box constraints as two inequalities
|
||||||
|
A_deq = [T_inv; -T_inv];
|
||||||
|
d = T_inv*u_track;
|
||||||
|
b_deq = [SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE - d;
|
||||||
|
SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE + d];
|
||||||
|
|
||||||
|
% solve the problem
|
||||||
|
% no <= constraints
|
||||||
|
% no equality constraints
|
||||||
|
% only upper/lower bound constraints
|
||||||
|
options = optimoptions('quadprog', 'Display', 'off');
|
||||||
|
u_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
|
||||||
|
|
||||||
|
u = T_inv * (u_track + u_corr);
|
||||||
|
|
||||||
|
global tu uu
|
||||||
|
tu = [tu, t];
|
||||||
|
uu = [uu, u_corr];
|
||||||
|
else
|
||||||
|
u = T_inv * u_track;
|
||||||
|
end
|
||||||
|
|
||||||
% saturation
|
% saturation
|
||||||
u = min(saturation, max(-saturation, u));
|
u = min(SATURATION, max(-SATURATION, u));
|
||||||
end
|
end
|
||||||
|
|
||||||
function x_track = feedback(x)
|
function x_track = feedback(x)
|
||||||
|
|
|
@ -19,14 +19,14 @@ switch i
|
||||||
xref = 5 + 10*s;
|
xref = 5 + 10*s;
|
||||||
yref = 0;
|
yref = 0;
|
||||||
case 4
|
case 4
|
||||||
xref = 5*cos(s);
|
xref = 2.5*cos(s);
|
||||||
yref = 5*sin(s);
|
yref = 2.5*sin(s);
|
||||||
case 5
|
case 5
|
||||||
xref = 15*cos(s);
|
xref = 15*cos(s);
|
||||||
yref = 15*sin(s);
|
yref = 15*sin(s);
|
||||||
case 6
|
case 6
|
||||||
xref = 5*cos(0.05*s);
|
xref = 5*cos(0.15*s);
|
||||||
yref = 5*sin(0.05*s);
|
yref = 5*sin(0.15*s);
|
||||||
end
|
end
|
||||||
|
|
||||||
ref = [xref; yref];
|
ref = [xref; yref];
|
||||||
|
|
44
tesiema.m
44
tesiema.m
|
@ -2,10 +2,14 @@ clc
|
||||||
clear all
|
clear all
|
||||||
close all
|
close all
|
||||||
|
|
||||||
global x0 ref dref b K saturation tc tfin
|
%% global variables
|
||||||
|
global x0 ref dref b K SATURATION tc tfin USE_PREDICTION PREDICTION_STEP PREDICTION_SATURATION_TOLERANCE;
|
||||||
|
|
||||||
TRAJECTORY = 0
|
%% variables
|
||||||
|
TRAJECTORY = 6
|
||||||
INITIAL_CONDITIONS = 1
|
INITIAL_CONDITIONS = 1
|
||||||
|
USE_PREDICTION = false
|
||||||
|
PREDICTION_STEPS = 1
|
||||||
% distance from the center of the unicycle to the point being tracked
|
% distance from the center of the unicycle to the point being tracked
|
||||||
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
|
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
|
||||||
% minore l'errore
|
% minore l'errore
|
||||||
|
@ -13,24 +17,47 @@ b = 0.2
|
||||||
% proportional gain
|
% proportional gain
|
||||||
K = eye(2)*2
|
K = eye(2)*2
|
||||||
|
|
||||||
|
tfin=10
|
||||||
|
|
||||||
% saturation
|
% saturation
|
||||||
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
|
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
|
||||||
% Radius of wheels 10cm. Wheels distanced 15cm from each other
|
% Radius of wheels 10cm. Wheels distanced 15cm from each other
|
||||||
% applying transformation, v
|
% applying transformation, v
|
||||||
% saturation = [1.57, 20];
|
% saturation = [1.57, 20];
|
||||||
saturation = [1.57; 20];
|
SATURATION = [1.57; 20];
|
||||||
|
PREDICTION_SATURATION_TOLERANCE = 0.1;
|
||||||
|
|
||||||
|
%% launch simulation
|
||||||
% initial state
|
% initial state
|
||||||
% In order, [x, y, theta]
|
% In order, [x, y, theta]
|
||||||
x0 = set_initial_conditions(INITIAL_CONDITIONS)
|
x0 = set_initial_conditions(INITIAL_CONDITIONS)
|
||||||
% trajectory to track
|
% trajectory to track
|
||||||
[ref, dref] = set_trajectory(TRAJECTORY)
|
[ref, dref] = set_trajectory(TRAJECTORY)
|
||||||
|
|
||||||
[t, x, ref_t, U] = simulate_discr(60, 0.1);
|
global tu uu
|
||||||
plot_results(t, x, ref_t, U);
|
|
||||||
|
|
||||||
|
%figure(1)
|
||||||
|
%USE_PREDICTION = false;
|
||||||
|
%[t, x, ref_t, U] = simulate_discr(tfin, 0.05);
|
||||||
|
%plot_results(t, x, ref_t, U);
|
||||||
|
|
||||||
|
figure(2)
|
||||||
|
USE_PREDICTION = true;
|
||||||
|
[t1, x1, ref_t1, U1] = simulate_discr(tfin, 0.05);
|
||||||
|
plot_results(t1, x1, ref_t1, U1);
|
||||||
|
|
||||||
|
figure(3)
|
||||||
|
subplot(1, 2, 1)
|
||||||
|
plot(tu, uu(1, :))
|
||||||
|
subplot(1, 2, 2)
|
||||||
|
plot(tu, uu(2, :))
|
||||||
|
%plot_results(t, x-x1, ref_t-ref_t1, U-U1);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%% FUNCTION DECLARATIONS
|
||||||
|
|
||||||
|
% Discrete-time simulation
|
||||||
function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
||||||
global ref x0 u_discr
|
global ref x0 u_discr
|
||||||
|
|
||||||
|
@ -41,7 +68,6 @@ function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
||||||
u_discr = control_act(t, x0);
|
u_discr = control_act(t, x0);
|
||||||
U = u_discr';
|
U = u_discr';
|
||||||
|
|
||||||
|
|
||||||
for n = 1:steps
|
for n = 1:steps
|
||||||
tspan = [(n-1)*tc n*tc];
|
tspan = [(n-1)*tc n*tc];
|
||||||
z0 = x(end, :);
|
z0 = x(end, :);
|
||||||
|
@ -51,7 +77,7 @@ function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
||||||
x = [x; z];
|
x = [x; z];
|
||||||
t = [t; v];
|
t = [t; v];
|
||||||
|
|
||||||
u_discr = control_act(t(end, :), x(end, :));
|
u_discr = control_act(t(end), x(end, :));
|
||||||
U = [U; ones(length(v), 1)*u_discr'];
|
U = [U; ones(length(v), 1)*u_discr'];
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -59,6 +85,7 @@ function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
% Continuos-time simulation
|
||||||
function [t, x, ref, U] = simulate_cont(tfin)
|
function [t, x, ref, U] = simulate_cont(tfin)
|
||||||
global ref x0
|
global ref x0
|
||||||
|
|
||||||
|
@ -79,6 +106,7 @@ function [t, x, ref, U] = simulate_cont(tfin)
|
||||||
ref = double(subs(ref, t'))';
|
ref = double(subs(ref, t'))';
|
||||||
end
|
end
|
||||||
|
|
||||||
|
% Plots
|
||||||
function plot_results(t, x, ref, U)
|
function plot_results(t, x, ref, U)
|
||||||
subplot(2,2,1)
|
subplot(2,2,1)
|
||||||
hold on
|
hold on
|
||||||
|
|
Loading…
Reference in New Issue