1-step mpc
parent
c79a8744b2
commit
44f65aed77
|
@ -1,22 +1,64 @@
|
|||
function u = control_act(t, x)
|
||||
|
||||
global ref dref K b saturation
|
||||
global ref dref K b SATURATION PREDICTION_SATURATION_TOLERANCE USE_PREDICTION PREDICTION_STEPS
|
||||
|
||||
ref_s = double(subs(ref, t));
|
||||
dref_s = double(subs(dref, t));
|
||||
|
||||
|
||||
err = ref_s - feedback(x);
|
||||
u_nom = dref_s + K*err;
|
||||
u_track = dref_s + K*err;
|
||||
|
||||
theta = x(3);
|
||||
|
||||
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
|
||||
|
||||
u = T_inv * ( u_nom );
|
||||
u = zeros(2,1);
|
||||
if USE_PREDICTION==true
|
||||
% 1-step prediction
|
||||
|
||||
% quadprog solves the problem in the form
|
||||
% min 1/2 x'Hx +f'x
|
||||
% where x is u_corr. Since u_corr is (v_corr; w_corr), and I want
|
||||
% to minimize u'u (norm squared of the function itself) H must be
|
||||
% the identity matrix of size 2
|
||||
H = eye(2)*2;
|
||||
% no linear of constant terms, so
|
||||
f = [];
|
||||
|
||||
% and there are box constraints on the saturation, as upper/lower
|
||||
% bounds
|
||||
%T = inv(T_inv);
|
||||
%lb = -T*saturation - u_track;
|
||||
%ub = T*saturation - u_track;
|
||||
% matlab says this is a more efficient way of doing
|
||||
% inv(T_inv)*saturation
|
||||
%lb = -T_inv\saturation - u_track;
|
||||
%ub = T_inv\saturation - u_track;
|
||||
|
||||
% Resolve box constraints as two inequalities
|
||||
A_deq = [T_inv; -T_inv];
|
||||
d = T_inv*u_track;
|
||||
b_deq = [SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE - d;
|
||||
SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE + d];
|
||||
|
||||
% solve the problem
|
||||
% no <= constraints
|
||||
% no equality constraints
|
||||
% only upper/lower bound constraints
|
||||
options = optimoptions('quadprog', 'Display', 'off');
|
||||
u_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
|
||||
|
||||
u = T_inv * (u_track + u_corr);
|
||||
|
||||
global tu uu
|
||||
tu = [tu, t];
|
||||
uu = [uu, u_corr];
|
||||
else
|
||||
u = T_inv * u_track;
|
||||
end
|
||||
|
||||
% saturation
|
||||
u = min(saturation, max(-saturation, u));
|
||||
u = min(SATURATION, max(-SATURATION, u));
|
||||
end
|
||||
|
||||
function x_track = feedback(x)
|
||||
|
|
|
@ -19,14 +19,14 @@ switch i
|
|||
xref = 5 + 10*s;
|
||||
yref = 0;
|
||||
case 4
|
||||
xref = 5*cos(s);
|
||||
yref = 5*sin(s);
|
||||
xref = 2.5*cos(s);
|
||||
yref = 2.5*sin(s);
|
||||
case 5
|
||||
xref = 15*cos(s);
|
||||
yref = 15*sin(s);
|
||||
case 6
|
||||
xref = 5*cos(0.05*s);
|
||||
yref = 5*sin(0.05*s);
|
||||
xref = 5*cos(0.15*s);
|
||||
yref = 5*sin(0.15*s);
|
||||
end
|
||||
|
||||
ref = [xref; yref];
|
||||
|
|
44
tesiema.m
44
tesiema.m
|
@ -2,10 +2,14 @@ clc
|
|||
clear all
|
||||
close all
|
||||
|
||||
global x0 ref dref b K saturation tc tfin
|
||||
%% global variables
|
||||
global x0 ref dref b K SATURATION tc tfin USE_PREDICTION PREDICTION_STEP PREDICTION_SATURATION_TOLERANCE;
|
||||
|
||||
TRAJECTORY = 0
|
||||
%% variables
|
||||
TRAJECTORY = 6
|
||||
INITIAL_CONDITIONS = 1
|
||||
USE_PREDICTION = false
|
||||
PREDICTION_STEPS = 1
|
||||
% distance from the center of the unicycle to the point being tracked
|
||||
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
|
||||
% minore l'errore
|
||||
|
@ -13,24 +17,47 @@ b = 0.2
|
|||
% proportional gain
|
||||
K = eye(2)*2
|
||||
|
||||
tfin=10
|
||||
|
||||
% saturation
|
||||
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
|
||||
% Radius of wheels 10cm. Wheels distanced 15cm from each other
|
||||
% applying transformation, v
|
||||
% saturation = [1.57, 20];
|
||||
saturation = [1.57; 20];
|
||||
|
||||
SATURATION = [1.57; 20];
|
||||
PREDICTION_SATURATION_TOLERANCE = 0.1;
|
||||
|
||||
%% launch simulation
|
||||
% initial state
|
||||
% In order, [x, y, theta]
|
||||
x0 = set_initial_conditions(INITIAL_CONDITIONS)
|
||||
% trajectory to track
|
||||
[ref, dref] = set_trajectory(TRAJECTORY)
|
||||
|
||||
[t, x, ref_t, U] = simulate_discr(60, 0.1);
|
||||
plot_results(t, x, ref_t, U);
|
||||
global tu uu
|
||||
|
||||
%figure(1)
|
||||
%USE_PREDICTION = false;
|
||||
%[t, x, ref_t, U] = simulate_discr(tfin, 0.05);
|
||||
%plot_results(t, x, ref_t, U);
|
||||
|
||||
figure(2)
|
||||
USE_PREDICTION = true;
|
||||
[t1, x1, ref_t1, U1] = simulate_discr(tfin, 0.05);
|
||||
plot_results(t1, x1, ref_t1, U1);
|
||||
|
||||
figure(3)
|
||||
subplot(1, 2, 1)
|
||||
plot(tu, uu(1, :))
|
||||
subplot(1, 2, 2)
|
||||
plot(tu, uu(2, :))
|
||||
%plot_results(t, x-x1, ref_t-ref_t1, U-U1);
|
||||
|
||||
|
||||
|
||||
%% FUNCTION DECLARATIONS
|
||||
|
||||
% Discrete-time simulation
|
||||
function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
||||
global ref x0 u_discr
|
||||
|
||||
|
@ -41,7 +68,6 @@ function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
|||
u_discr = control_act(t, x0);
|
||||
U = u_discr';
|
||||
|
||||
|
||||
for n = 1:steps
|
||||
tspan = [(n-1)*tc n*tc];
|
||||
z0 = x(end, :);
|
||||
|
@ -51,7 +77,7 @@ function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
|||
x = [x; z];
|
||||
t = [t; v];
|
||||
|
||||
u_discr = control_act(t(end, :), x(end, :));
|
||||
u_discr = control_act(t(end), x(end, :));
|
||||
U = [U; ones(length(v), 1)*u_discr'];
|
||||
end
|
||||
|
||||
|
@ -59,6 +85,7 @@ function [t, x, ref_t, U] = simulate_discr(tfin, tc)
|
|||
end
|
||||
|
||||
|
||||
% Continuos-time simulation
|
||||
function [t, x, ref, U] = simulate_cont(tfin)
|
||||
global ref x0
|
||||
|
||||
|
@ -79,6 +106,7 @@ function [t, x, ref, U] = simulate_cont(tfin)
|
|||
ref = double(subs(ref, t'))';
|
||||
end
|
||||
|
||||
% Plots
|
||||
function plot_results(t, x, ref, U)
|
||||
subplot(2,2,1)
|
||||
hold on
|
||||
|
|
Loading…
Reference in New Issue