restructure code to allow execution in parallel

these commits are so messy
master
EmaMaker 2024-07-24 14:57:19 +02:00
parent ec8b2dcecb
commit 89cb27ff49
12 changed files with 69 additions and 109 deletions

View File

@ -1,42 +1,40 @@
function u = control_act(t, q) function u = control_act(t, q, sim_data)
global SATURATION dc = decouple_matrix(q, sim_data.b);
ut = utrack(t, q, sim_data);
dc = decouple_matrix(q); uc = ucorr(t, q, sim_data);
ut = utrack(t,q);
uc = ucorr(t,q);
u = dc * (ut + uc); u = dc * (ut + uc);
% saturation % saturation
u = min(SATURATION, max(-SATURATION, u)); u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
end end
function u_corr = ucorr(t,q) function u_corr = ucorr(t, q, sim_data)
global SATURATION PREDICTION_SATURATION_TOLERANCE PREDICTION_HORIZON tc pred_hor = sim_data.PREDICTION_HORIZON;
SATURATION = sim_data.SATURATION;
if eq(PREDICTION_HORIZON, 0) PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE;
tc = sim_data.tc;
if eq(pred_hor, 0)
u_corr = zeros(2,1); u_corr = zeros(2,1);
return return
end end
persistent U_corr_history; persistent U_corr_history;
if isempty(U_corr_history) if isempty(U_corr_history)
U_corr_history = zeros(2, 1, PREDICTION_HORIZON); U_corr_history = zeros(2, 1, pred_hor);
end end
%disp('start of simulation') %disp('start of simulation')
q_prec = q; q_prec = q;
%q_pred = []; q_pred=zeros(3,1, pred_hor);
%u_track_pred = []; u_track_pred=zeros(2,1, pred_hor+1);
%t_inv_pred = []; T_inv_pred=zeros(2,2, pred_hor+1);
q_pred=zeros(3,1, PREDICTION_HORIZON);
u_track_pred=zeros(2,1, PREDICTION_HORIZON+1);
T_inv_pred=zeros(2,2, PREDICTION_HORIZON+1);
% for each step in the prediction horizon, integrate the system to % for each step in the prediction horizon, integrate the system to
% predict its future state % predict its future state
% the first step takes in q_k-1 and calculates q_new = q_k % the first step takes in q_k-1 and calculates q_new = q_k
% this means that u_track_pred will contain u_track_k-1 and will not % this means that u_track_pred will contain u_track_k-1 and will not
% contain u_track_k+C % contain u_track_k+C
for k = 1:PREDICTION_HORIZON for k = 1:pred_hor
% start from the old (known) state % start from the old (known) state
% calculate the inputs, based on the old state % calculate the inputs, based on the old state
@ -45,9 +43,9 @@ function u_corr = ucorr(t,q)
u_corr_ = U_corr_history(:, :, k); u_corr_ = U_corr_history(:, :, k);
% u_track can be calculated from q % u_track can be calculated from q
t_ = t + tc*(k-1); t_ = t + tc*(k-1);
u_track_ = utrack(t_, q_prec); u_track_ = utrack(t_, q_prec, sim_data);
T_inv = decouple_matrix(q_prec); T_inv = decouple_matrix(q_prec, sim_data.b);
u_ = T_inv * (u_corr_ + u_track_); u_ = T_inv * (u_corr_ + u_track_);
% calc the state integrating with euler % calc the state integrating with euler
@ -70,11 +68,11 @@ function u_corr = ucorr(t,q)
%q_prec %q_prec
% calculate u_track_k+C % calculate u_track_k+C
u_track_pred(:,:,PREDICTION_HORIZON+1) = utrack(t+tc*PREDICTION_HORIZON, q_prec); u_track_pred(:,:,pred_hor+1) = utrack(t+tc*pred_hor, q_prec, sim_data);
% remove u_track_k-1 % remove u_track_k-1
u_track_pred = u_track_pred(:,:,2:end); u_track_pred = u_track_pred(:,:,2:end);
T_inv_pred(:,:,PREDICTION_HORIZON+1) = decouple_matrix(q_prec); T_inv_pred(:,:,pred_hor+1) = decouple_matrix(q_prec, sim_data.b);
T_inv_pred = T_inv_pred(:,:,2:end); T_inv_pred = T_inv_pred(:,:,2:end);
%disp('end of patching data up') %disp('end of patching data up')
@ -99,11 +97,11 @@ function u_corr = ucorr(t,q)
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2: % A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON*2 (number of % accounting for T_inv and -T_inv) by PREDICTION_HORIZON*2 (number of
% vectors in u_corr times the number of elements [2] in each vector) % vectors in u_corr times the number of elements [2] in each vector)
A_max_elems = PREDICTION_HORIZON * 2 * 2; A_max_elems = pred_hor * 2 * 2;
A_deq = []; A_deq = [];
b_deq = []; b_deq = [];
for k=1:PREDICTION_HORIZON for k=1:pred_hor
T_inv = T_inv_pred(:,:,k); T_inv = T_inv_pred(:,:,k);
u_track = u_track_pred(:,:,k); u_track = u_track_pred(:,:,k);
@ -126,9 +124,9 @@ function u_corr = ucorr(t,q)
% squared norm of u_corr. H must be identity, % squared norm of u_corr. H must be identity,
% PREDICTION_HORIZON*size(u_corr) % PREDICTION_HORIZON*size(u_corr)
H = eye(PREDICTION_HORIZON*2)*2; H = eye(pred_hor*2)*2;
% no linear terms % no linear terms
f = zeros(PREDICTION_HORIZON*2, 1); f = zeros(pred_hor*2, 1);
% solve qp problem % solve qp problem
options = optimoptions('quadprog', 'Display', 'off'); options = optimoptions('quadprog', 'Display', 'off');
@ -136,30 +134,26 @@ function u_corr = ucorr(t,q)
% reshape the vector of vectors to be an array, each element being % reshape the vector of vectors to be an array, each element being
% u_corr_j as a 2x1 vector % u_corr_j as a 2x1 vector
U_corr_history = reshape(U_corr, [2,1,PREDICTION_HORIZON]); U_corr_history = reshape(U_corr, [2,1,pred_hor]);
u_corr=U_corr_history(:,:, 1); u_corr=U_corr_history(:,:, 1);
end end
function u_track = utrack(t, q) function u_track = utrack(t, q, sim_data)
global ref dref K ref_s = double(subs(sim_data.ref, t));
ref_s = double(subs(ref, t)); dref_s = double(subs(sim_data.dref, t));
dref_s = double(subs(dref, t));
f = feedback(q); f = feedback(q, sim_data.b);
err = ref_s - f; err = ref_s - f;
u_track = dref_s + K*err; u_track = dref_s + sim_data.K*err;
end end
function q_track = feedback(q) function q_track = feedback(q, b)
global b
q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ]; q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
end end
function T_inv = decouple_matrix(q) function T_inv = decouple_matrix(q, b)
global b
theta = q(3); theta = q(3);
st = sin(theta); st = sin(theta);
ct = cos(theta); ct = cos(theta);

View File

@ -1,3 +1,3 @@
function q = sistema(t, q) function q = sistema(t, q, sim_data)
q = unicycle(t, q, control_act(t, q)); q = unicycle(t, q, control_act(t, q, sim_data));
end end

View File

@ -1,4 +1,3 @@
function x = sistema_discr(t, q) function dq = sistema_discr(t, q, u_discr)
global u_discr dq = unicycle(t, q, u_discr);
q = unicycle(t, q, u_discr);
end end

0
tesi-spmd.m Normal file
View File

View File

@ -3,91 +3,58 @@ clear all
close all close all
%% global variables %% global variables
global q0 ref dref b tc K SATURATION tc tfin USE_PREDICTION PREDICTION_HORIZON PREDICTION_SATURATION_TOLERANCE; global K SATURATION PREDICTION_HORIZON PREDICTION_SATURATION_TOLERANCE;
%% variables sim_data = load(['tests/sin/common.mat']);
TRAJECTORY = 6
INITIAL_CONDITIONS = 1
USE_PREDICTION = false
PREDICTION_HORIZON = 5
% distance from the center of the unicycle to the point being tracked
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
% minore l'errore
b = 0.2
% proportional gain
K = eye(2)*2
tc = 0.1 sim_data.q0 = set_initial_conditions(sim_data.INITIAL_CONDITIONS);
tfin=30 [ref dref] = set_trajectory(sim_data.TRAJECTORY);
sim_data.ref = ref;
sim_data.dref = dref;
% saturation spmd (3)
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s. worker_index = spmdIndex;
% Radius of wheels 10cm. Wheels distanced 15cm from each other data = load(['tests/sin/sin' num2str(spmdIndex) '.mat']);
% applying transformation, v
% saturation = [1.57, 20]; sim_data.PREDICTION_HORIZON = data.PREDICTION_HORIZON;
SATURATION = [1; 1]; sim_data
PREDICTION_SATURATION_TOLERANCE = 0.0;
%% launch simulation
% initial state
% In order, [x, y, theta]
q0 = set_initial_conditions(INITIAL_CONDITIONS)
% trajectory to track
[ref, dref] = set_trajectory(TRAJECTORY)
global tu uu
figure(1)
PREDICTION_HORIZON = 0;
[t, q, ref_t, U] = simulate_discr(tfin);
plot_results(t, q, ref_t, U);
figure(2)
PREDICTION_HORIZON = 1;
[t1, q1, ref_t1, U1] = simulate_discr(tfin);
plot_results(t1, q1, ref_t1, U1);
figure(3)
PREDICTION_HORIZON = 2;
[t2, q2, ref_t2, U2] = simulate_discr(tfin);
plot_results(t2, q2, ref_t2, U2);
%figure(3)
%subplot(1, 2, 1)
%plot(tu, uu(1, :))
%subplot(1, 2, 2)
%plot(tu, uu(2, :))
%plot_results(t, x-x1, ref_t-ref_t1, U-U1);
[t, q, ref_t, U] = simulate_discr(sim_data);
end
s_ = size(worker_index);
for n = 1:s_(2)
figure(n)
plot_results(t{n}, q{n}, ref_t{n}, U{n});
end
%% FUNCTION DECLARATIONS %% FUNCTION DECLARATIONS
% Discrete-time simulation % Discrete-time simulation
function [t, q, ref_t, U] = simulate_discr(tfin) function [t, q, ref_t, U] = simulate_discr(sim_data)
global ref q0 u_discr tc tc = sim_data.tc;
steps = sim_data.tfin/tc
steps = tfin/tc
q = q0'; q = sim_data.q0';
t = 0; t = 0;
u_discr = control_act(t, q0); u_discr = control_act(t, q, sim_data);
U = u_discr'; U = u_discr';
for n = 1:steps for n = 1:steps
tspan = [(n-1)*tc n*tc]; tspan = [(n-1)*tc n*tc];
z0 = q(end, :); z0 = q(end, :);
[v, z] = ode45(@sistema, tspan, z0); %[v, z] = ode45(@sistema_discr, tspan, z0, u_discr);
[v, z] = ode45(@(v, z) sistema_discr(v, z, u_discr), tspan, z0);
q = [q; z]; q = [q; z];
t = [t; v]; t = [t; v];
u_discr = control_act(t(end), q(end, :)); u_discr = control_act(t(end), q(end, :), sim_data);
U = [U; ones(length(v), 1)*u_discr']; U = [U; ones(length(v), 1)*u_discr'];
end end
ref_t = double(subs(ref, t'))'; ref_t = double(subs(sim_data.ref, t'))';
end end

BIN
tests/sin/common.mat Normal file

Binary file not shown.

BIN
tests/sin/sin1.mat Normal file

Binary file not shown.

BIN
tests/sin/sin2.mat Normal file

Binary file not shown.

BIN
tests/sin/sin3.mat Normal file

Binary file not shown.

View File

@ -1,7 +1,7 @@
function dx = unicycle(t, x, u) function dq = unicycle(t, q, u)
% u is (v;w) % u is (v;w)
% x is (x; y; theta) % x is (x; y; theta)
theta = x(3); theta = q(3);
G_x = [cos(theta), 0; sin(theta), 0; 0, 1]; G_q = [cos(theta), 0; sin(theta), 0; 0, 1];
dx = G_x*u; dq = G_q*u;
end end