parent
ec8b2dcecb
commit
89cb27ff49
|
@ -1,42 +1,40 @@
|
|||
function u = control_act(t, q)
|
||||
global SATURATION
|
||||
|
||||
dc = decouple_matrix(q);
|
||||
ut = utrack(t,q);
|
||||
uc = ucorr(t,q);
|
||||
function u = control_act(t, q, sim_data)
|
||||
dc = decouple_matrix(q, sim_data.b);
|
||||
ut = utrack(t, q, sim_data);
|
||||
uc = ucorr(t, q, sim_data);
|
||||
u = dc * (ut + uc);
|
||||
% saturation
|
||||
u = min(SATURATION, max(-SATURATION, u));
|
||||
u = min(sim_data.SATURATION, max(-sim_data.SATURATION, u));
|
||||
end
|
||||
|
||||
function u_corr = ucorr(t,q)
|
||||
global SATURATION PREDICTION_SATURATION_TOLERANCE PREDICTION_HORIZON tc
|
||||
function u_corr = ucorr(t, q, sim_data)
|
||||
pred_hor = sim_data.PREDICTION_HORIZON;
|
||||
SATURATION = sim_data.SATURATION;
|
||||
PREDICTION_SATURATION_TOLERANCE = sim_data.PREDICTION_SATURATION_TOLERANCE;
|
||||
tc = sim_data.tc;
|
||||
|
||||
if eq(PREDICTION_HORIZON, 0)
|
||||
if eq(pred_hor, 0)
|
||||
u_corr = zeros(2,1);
|
||||
return
|
||||
end
|
||||
|
||||
persistent U_corr_history;
|
||||
if isempty(U_corr_history)
|
||||
U_corr_history = zeros(2, 1, PREDICTION_HORIZON);
|
||||
U_corr_history = zeros(2, 1, pred_hor);
|
||||
end
|
||||
|
||||
%disp('start of simulation')
|
||||
q_prec = q;
|
||||
%q_pred = [];
|
||||
%u_track_pred = [];
|
||||
%t_inv_pred = [];
|
||||
q_pred=zeros(3,1, PREDICTION_HORIZON);
|
||||
u_track_pred=zeros(2,1, PREDICTION_HORIZON+1);
|
||||
T_inv_pred=zeros(2,2, PREDICTION_HORIZON+1);
|
||||
q_pred=zeros(3,1, pred_hor);
|
||||
u_track_pred=zeros(2,1, pred_hor+1);
|
||||
T_inv_pred=zeros(2,2, pred_hor+1);
|
||||
% for each step in the prediction horizon, integrate the system to
|
||||
% predict its future state
|
||||
|
||||
% the first step takes in q_k-1 and calculates q_new = q_k
|
||||
% this means that u_track_pred will contain u_track_k-1 and will not
|
||||
% contain u_track_k+C
|
||||
for k = 1:PREDICTION_HORIZON
|
||||
for k = 1:pred_hor
|
||||
% start from the old (known) state
|
||||
|
||||
% calculate the inputs, based on the old state
|
||||
|
@ -45,9 +43,9 @@ function u_corr = ucorr(t,q)
|
|||
u_corr_ = U_corr_history(:, :, k);
|
||||
% u_track can be calculated from q
|
||||
t_ = t + tc*(k-1);
|
||||
u_track_ = utrack(t_, q_prec);
|
||||
u_track_ = utrack(t_, q_prec, sim_data);
|
||||
|
||||
T_inv = decouple_matrix(q_prec);
|
||||
T_inv = decouple_matrix(q_prec, sim_data.b);
|
||||
u_ = T_inv * (u_corr_ + u_track_);
|
||||
|
||||
% calc the state integrating with euler
|
||||
|
@ -70,11 +68,11 @@ function u_corr = ucorr(t,q)
|
|||
%q_prec
|
||||
|
||||
% calculate u_track_k+C
|
||||
u_track_pred(:,:,PREDICTION_HORIZON+1) = utrack(t+tc*PREDICTION_HORIZON, q_prec);
|
||||
u_track_pred(:,:,pred_hor+1) = utrack(t+tc*pred_hor, q_prec, sim_data);
|
||||
% remove u_track_k-1
|
||||
u_track_pred = u_track_pred(:,:,2:end);
|
||||
|
||||
T_inv_pred(:,:,PREDICTION_HORIZON+1) = decouple_matrix(q_prec);
|
||||
T_inv_pred(:,:,pred_hor+1) = decouple_matrix(q_prec, sim_data.b);
|
||||
T_inv_pred = T_inv_pred(:,:,2:end);
|
||||
|
||||
%disp('end of patching data up')
|
||||
|
@ -99,11 +97,11 @@ function u_corr = ucorr(t,q)
|
|||
% A will be at most PREDICTION_HORIZON * 2 * 2 (2: size of T_inv; 2:
|
||||
% accounting for T_inv and -T_inv) by PREDICTION_HORIZON*2 (number of
|
||||
% vectors in u_corr times the number of elements [2] in each vector)
|
||||
A_max_elems = PREDICTION_HORIZON * 2 * 2;
|
||||
A_max_elems = pred_hor * 2 * 2;
|
||||
A_deq = [];
|
||||
b_deq = [];
|
||||
|
||||
for k=1:PREDICTION_HORIZON
|
||||
for k=1:pred_hor
|
||||
T_inv = T_inv_pred(:,:,k);
|
||||
u_track = u_track_pred(:,:,k);
|
||||
|
||||
|
@ -126,9 +124,9 @@ function u_corr = ucorr(t,q)
|
|||
|
||||
% squared norm of u_corr. H must be identity,
|
||||
% PREDICTION_HORIZON*size(u_corr)
|
||||
H = eye(PREDICTION_HORIZON*2)*2;
|
||||
H = eye(pred_hor*2)*2;
|
||||
% no linear terms
|
||||
f = zeros(PREDICTION_HORIZON*2, 1);
|
||||
f = zeros(pred_hor*2, 1);
|
||||
|
||||
% solve qp problem
|
||||
options = optimoptions('quadprog', 'Display', 'off');
|
||||
|
@ -136,30 +134,26 @@ function u_corr = ucorr(t,q)
|
|||
|
||||
% reshape the vector of vectors to be an array, each element being
|
||||
% u_corr_j as a 2x1 vector
|
||||
U_corr_history = reshape(U_corr, [2,1,PREDICTION_HORIZON]);
|
||||
U_corr_history = reshape(U_corr, [2,1,pred_hor]);
|
||||
|
||||
u_corr=U_corr_history(:,:, 1);
|
||||
|
||||
end
|
||||
|
||||
function u_track = utrack(t, q)
|
||||
global ref dref K
|
||||
ref_s = double(subs(ref, t));
|
||||
dref_s = double(subs(dref, t));
|
||||
function u_track = utrack(t, q, sim_data)
|
||||
ref_s = double(subs(sim_data.ref, t));
|
||||
dref_s = double(subs(sim_data.dref, t));
|
||||
|
||||
f = feedback(q);
|
||||
f = feedback(q, sim_data.b);
|
||||
err = ref_s - f;
|
||||
u_track = dref_s + K*err;
|
||||
u_track = dref_s + sim_data.K*err;
|
||||
end
|
||||
|
||||
function q_track = feedback(q)
|
||||
global b
|
||||
function q_track = feedback(q, b)
|
||||
q_track = [q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
|
||||
end
|
||||
|
||||
function T_inv = decouple_matrix(q)
|
||||
global b
|
||||
|
||||
function T_inv = decouple_matrix(q, b)
|
||||
theta = q(3);
|
||||
st = sin(theta);
|
||||
ct = cos(theta);
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
function q = sistema(t, q)
|
||||
q = unicycle(t, q, control_act(t, q));
|
||||
function q = sistema(t, q, sim_data)
|
||||
q = unicycle(t, q, control_act(t, q, sim_data));
|
||||
end
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
function x = sistema_discr(t, q)
|
||||
global u_discr
|
||||
q = unicycle(t, q, u_discr);
|
||||
function dq = sistema_discr(t, q, u_discr)
|
||||
dq = unicycle(t, q, u_discr);
|
||||
end
|
||||
|
|
87
tesiema.m
87
tesiema.m
|
@ -3,91 +3,58 @@ clear all
|
|||
close all
|
||||
|
||||
%% global variables
|
||||
global q0 ref dref b tc K SATURATION tc tfin USE_PREDICTION PREDICTION_HORIZON PREDICTION_SATURATION_TOLERANCE;
|
||||
global K SATURATION PREDICTION_HORIZON PREDICTION_SATURATION_TOLERANCE;
|
||||
|
||||
%% variables
|
||||
TRAJECTORY = 6
|
||||
INITIAL_CONDITIONS = 1
|
||||
USE_PREDICTION = false
|
||||
PREDICTION_HORIZON = 5
|
||||
% distance from the center of the unicycle to the point being tracked
|
||||
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
|
||||
% minore l'errore
|
||||
b = 0.2
|
||||
% proportional gain
|
||||
K = eye(2)*2
|
||||
sim_data = load(['tests/sin/common.mat']);
|
||||
|
||||
tc = 0.1
|
||||
tfin=30
|
||||
sim_data.q0 = set_initial_conditions(sim_data.INITIAL_CONDITIONS);
|
||||
[ref dref] = set_trajectory(sim_data.TRAJECTORY);
|
||||
sim_data.ref = ref;
|
||||
sim_data.dref = dref;
|
||||
|
||||
% saturation
|
||||
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
|
||||
% Radius of wheels 10cm. Wheels distanced 15cm from each other
|
||||
% applying transformation, v
|
||||
% saturation = [1.57, 20];
|
||||
SATURATION = [1; 1];
|
||||
PREDICTION_SATURATION_TOLERANCE = 0.0;
|
||||
spmd (3)
|
||||
worker_index = spmdIndex;
|
||||
data = load(['tests/sin/sin' num2str(spmdIndex) '.mat']);
|
||||
|
||||
%% launch simulation
|
||||
% initial state
|
||||
% In order, [x, y, theta]
|
||||
q0 = set_initial_conditions(INITIAL_CONDITIONS)
|
||||
% trajectory to track
|
||||
[ref, dref] = set_trajectory(TRAJECTORY)
|
||||
|
||||
global tu uu
|
||||
|
||||
figure(1)
|
||||
PREDICTION_HORIZON = 0;
|
||||
[t, q, ref_t, U] = simulate_discr(tfin);
|
||||
plot_results(t, q, ref_t, U);
|
||||
|
||||
figure(2)
|
||||
PREDICTION_HORIZON = 1;
|
||||
[t1, q1, ref_t1, U1] = simulate_discr(tfin);
|
||||
plot_results(t1, q1, ref_t1, U1);
|
||||
|
||||
figure(3)
|
||||
PREDICTION_HORIZON = 2;
|
||||
[t2, q2, ref_t2, U2] = simulate_discr(tfin);
|
||||
plot_results(t2, q2, ref_t2, U2);
|
||||
|
||||
%figure(3)
|
||||
%subplot(1, 2, 1)
|
||||
%plot(tu, uu(1, :))
|
||||
%subplot(1, 2, 2)
|
||||
%plot(tu, uu(2, :))
|
||||
%plot_results(t, x-x1, ref_t-ref_t1, U-U1);
|
||||
sim_data.PREDICTION_HORIZON = data.PREDICTION_HORIZON;
|
||||
sim_data
|
||||
|
||||
[t, q, ref_t, U] = simulate_discr(sim_data);
|
||||
end
|
||||
|
||||
s_ = size(worker_index);
|
||||
for n = 1:s_(2)
|
||||
figure(n)
|
||||
plot_results(t{n}, q{n}, ref_t{n}, U{n});
|
||||
end
|
||||
|
||||
%% FUNCTION DECLARATIONS
|
||||
|
||||
% Discrete-time simulation
|
||||
function [t, q, ref_t, U] = simulate_discr(tfin)
|
||||
global ref q0 u_discr tc
|
||||
function [t, q, ref_t, U] = simulate_discr(sim_data)
|
||||
tc = sim_data.tc;
|
||||
steps = sim_data.tfin/tc
|
||||
|
||||
steps = tfin/tc
|
||||
|
||||
q = q0';
|
||||
q = sim_data.q0';
|
||||
t = 0;
|
||||
u_discr = control_act(t, q0);
|
||||
u_discr = control_act(t, q, sim_data);
|
||||
U = u_discr';
|
||||
|
||||
for n = 1:steps
|
||||
tspan = [(n-1)*tc n*tc];
|
||||
z0 = q(end, :);
|
||||
|
||||
[v, z] = ode45(@sistema, tspan, z0);
|
||||
%[v, z] = ode45(@sistema_discr, tspan, z0, u_discr);
|
||||
[v, z] = ode45(@(v, z) sistema_discr(v, z, u_discr), tspan, z0);
|
||||
|
||||
q = [q; z];
|
||||
t = [t; v];
|
||||
|
||||
u_discr = control_act(t(end), q(end, :));
|
||||
u_discr = control_act(t(end), q(end, :), sim_data);
|
||||
U = [U; ones(length(v), 1)*u_discr'];
|
||||
end
|
||||
|
||||
ref_t = double(subs(ref, t'))';
|
||||
ref_t = double(subs(sim_data.ref, t'))';
|
||||
end
|
||||
|
||||
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -1,7 +1,7 @@
|
|||
function dx = unicycle(t, x, u)
|
||||
function dq = unicycle(t, q, u)
|
||||
% u is (v;w)
|
||||
% x is (x; y; theta)
|
||||
theta = x(3);
|
||||
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
|
||||
dx = G_x*u;
|
||||
theta = q(3);
|
||||
G_q = [cos(theta), 0; sin(theta), 0; 0, 1];
|
||||
dq = G_q*u;
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue