Compare commits

..

3 Commits

Author SHA1 Message Date
EmaMaker e70f3fe1e5 sim: nonlinear simulation
Demonstrates both the analytical solution and the current PID values work
2024-01-13 13:15:52 +01:00
EmaMaker 83f28d04a2 sim: let matlab derive transfer function
and recalibrate pid with that
2024-01-13 13:15:29 +01:00
EmaMaker ca0207932d update .gitignore 2024-01-13 13:14:54 +01:00
20 changed files with 11 additions and 3209 deletions

View File

@ -6,7 +6,7 @@
constexpr float MOT_SX_MULT = 1.0;
constexpr float MOT_DX_MULT = 1.0;
ArduPID angleCtrl, speedCtrl;
ArduPID myController;
// Calculated with matlab, then adjusted by hand
@ -18,21 +18,16 @@ Ki = KpTc/ti
Kd = KpTd/Tc
*/
constexpr double kponkd = 935.9697;
constexpr double kionkd = 1.3189e+04;
constexpr double KD = 0.1;
constexpr double KP = 5.8;
constexpr double KI = 0.2;
constexpr double KD = 0.1;
//double setpoint = -0.015;
double setpoint = 0.0;
double output = 0;
double input = 0;
double speed_setpoint = 0.0;
double speed_output = 0.0;
double speed_input = 0.0;
double roll{ 0 }, pitch{ 0 }, yaw{ 0 };
constexpr double max_torque_sx = 0.392;
@ -57,17 +52,11 @@ void setup(void) {
update_imu();
}
angleCtrl.begin(&input, &output, &setpoint, KP, KI, KD, P_ON_E, FORWARD);
angleCtrl.setOutputLimits(-max_torque, max_torque); // double of max torque motors can exhert
// angleCtrl.setWindUpLimits(-0.2 , 0.02);
angleCtrl.setSampleTime(1);
angleCtrl.start();
speedCtrl.begin(&speed_input, &speed_output, &speed_setpoint, 0, 0.12, 0, P_ON_E, BACKWARD);
speedCtrl.setOutputLimits(-max_torque, max_torque); // double of max torque motors can exhert
speedCtrl.setSampleTime(1);
speedCtrl.start();
myController.begin(&input, &output, &setpoint, KP, KI, KD, P_ON_E, FORWARD);
myController.setOutputLimits(-max_torque, max_torque); // double of max torque motors can exhert
// myController.setWindUpLimits(-0.2 , 0.02);
myController.setSampleTime(1);
myController.start();
digitalWrite(LED_BUILTIN, LOW);
@ -82,20 +71,11 @@ void loop() {
}
void compute(){
static unsigned long last_time;
unsigned long t = millis();
unsigned long dt = millis() - t;
last_time = t;
speedCtrl.compute();
Serial.print(speed_input);
Serial.print(" ");
Serial.println(speed_output);
update_imu();
input = speed_output-pitch;
angleCtrl.compute();
input = pitch;
myController.compute();
double torque = abs(output);
@ -105,7 +85,4 @@ void compute(){
move_pwm(MOT_SX, pwm_sx);
move_pwm(MOT_DX, pwm_dx);
speed_input = torque*0.5*s;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@ -1,50 +0,0 @@
% Model of self balancing robot for PID controller
% See scheme anf formulas on notebook
clear all
clc
load('params.mat')
I_wheel = M_wheel*(r^2); %placeholder
I_body = M_body*(l^2)/3; %placeholder
nums1 = -(M_body + 2*(I_wheel/r^2) + 2*M_wheel + M_body*l/r);
nums0 = -2*b/r;
num = [nums1 nums0];
dens3 = I_body * M_body + 2*I_wheel*(I_body*M_body*l^2)/(r^2) + 2*I_body*M_wheel + 2*M_wheel*M_body*l^2;
dens2 = (2*b/r)*(I_body+M_body*g);
dens1 = -( ((M_body^2)*g*l) + 2*(I_wheel*M_body*g*l)/(r^2) + 2*M_body*M_wheel*g*l );
dens0 = -2*(b*M_body*g*l) / r;
den = [dens3 dens2 dens1 dens0];
w = tf(num, den)
sys = zpk(w);
sys.DisplayFormat='roots'
%sys.Z{1}
% sys.P{1}(1)
K = sys.K
p1 = sys.P{1}(1)
p2 = sys.P{1}(3)
p3 = sys.P{1}(2)
%display('Kd must be [' + num2str(p3/K) + ', 0]');
% Scelgo Kd così
kd = -0.001
kponkd = (p1+p2);
kionkd = (p1*p2);
kp = kponkd*kd
ki = kionkd*kd
% rlocus(sys, -sys)
%{
bode(w)
figure;
nyquist(w)
%}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB