Compare commits

...

5 Commits

Author SHA1 Message Date
EmaMaker 02fdac42e3 rename state x to q 2024-07-23 18:07:50 +02:00
EmaMaker 44f65aed77 1-step mpc 2024-07-16 10:58:00 +02:00
EmaMaker c79a8744b2 simulate system in discrete time 2024-07-14 15:16:05 +02:00
EmaMaker 35167bfed8 plot trajectory in the xy plane 2024-07-13 12:15:26 +02:00
EmaMaker 1b4b0de3c6 add .gitignore 2024-07-13 12:15:09 +02:00
8 changed files with 213 additions and 79 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.asv

BIN
TMECH22.pdf Normal file

Binary file not shown.

View File

@ -1,26 +1,69 @@
function u = control_act(t, x)
global ref dref K b saturation
function u = control_act(t, q)
global ref dref K b SATURATION PREDICTION_SATURATION_TOLERANCE USE_PREDICTION PREDICTION_STEPS
ref_s = double(subs(ref, t));
dref_s = double(subs(dref, t));
err = ref_s - feedback(x);
u_nom = dref_s + K*err;
err = ref_s - feedback(q);
u_track = dref_s + K*err;
theta = x(3);
theta = q(3);
T_inv = [cos(theta), sin(theta); -sin(theta)/b, cos(theta)/b];
u = zeros(2,1);
if USE_PREDICTION==true
% 1-step prediction
u = T_inv * u_nom;
% quadprog solves the problem in the form
% min 1/2 x'Hx +f'x
% where x is u_corr. Since u_corr is (v_corr; w_corr), and I want
% to minimize u'u (norm squared of u_corr itself) H must be
% the identity matrix of size 2
H = eye(2)*2;
% no linear of constant terms, so
f = [];
% and there are box constraints on the saturation, as upper/lower
% bounds
%T = inv(T_inv);
%lb = -T*saturation - u_track;
%ub = T*saturation - u_track;
% matlab says this is a more efficient way of doing
% inv(T_inv)*saturation
%lb = -T_inv\saturation - u_track;
%ub = T_inv\saturation - u_track;
% Resolve box constraints as two inequalities
A_deq = [T_inv; -T_inv];
d = T_inv*u_track;
b_deq = [SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE - d;
SATURATION - ones(2,1)*PREDICTION_SATURATION_TOLERANCE + d];
% solve the problem
% no <= constraints
% no equality constraints
% only upper/lower bound constraints
options = optimoptions('quadprog', 'Display', 'off');
u_corr = quadprog(H, f, A_deq, b_deq, [],[],[],[],[],options);
u = T_inv * (u_track + u_corr);
global tu uu
tu = [tu, t];
uu = [uu, u_corr];
else
u = T_inv * u_track;
end
% saturation
u = min(saturation, max(-saturation, u));
u = min(SATURATION, max(-SATURATION, u));
end
function x_track = feedback(x)
function q_track = feedback(q)
global b
x_track = [ x(1) + b*cos(x(3)); x(2) + b*sin(x(3)) ];
q_track = [ q(1) + b*cos(q(3)); q(2) + b*sin(q(3)) ];
end

View File

@ -11,14 +11,25 @@ switch i
xref = 10*s;
yref = 0;
case 2
xref = 5*cos(s);
yref = 5*sin(s);
% straight line, with initial error
xref = 5 + 0.5*s;
yref = 0;
case 3
% straight line, initial error, faster
xref = 5 + 10*s;
yref = 0;
case 4
xref = 2.5*cos(s);
yref = 2.5*sin(s);
case 5
xref = 15*cos(s);
yref = 15*sin(s);
case 4
xref = 5*cos(0.05*s)
yref = 5*cos(0.05*s)
case 6
xref = 0.4*s;
yref = cos(0.4*s);
case 7
xref = 5*cos(0.05*s);
yref = 5*sin(0.05*s);
end
ref = [xref; yref];

View File

@ -1,11 +1,3 @@
function x = sistema(t, x)
x = unicycle(t, x, control_act(t, x));
end
function dx = unicycle(t, x, u)
% u is (v;w)
% x is (x; y; theta)
theta = x(3);
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
dx = G_x*u;
function q = sistema(t, q)
q = unicycle(t, q, control_act(t, q));
end

4
sistema_discr.m Normal file
View File

@ -0,0 +1,4 @@
function x = sistema_discr(t, q)
global u_discr
q = unicycle(t, q, u_discr);
end

186
tesiema.m
View File

@ -2,78 +2,154 @@ clc
clear all
close all
global x0 ref dref b K saturation
%% global variables
global q0 ref dref b K SATURATION tc tfin USE_PREDICTION PREDICTION_STEP PREDICTION_SATURATION_TOLERANCE;
TRAJECTORY = 4
INITIAL_CONDITIONS = 0
%% variables
TRAJECTORY = 6
INITIAL_CONDITIONS = 1
USE_PREDICTION = false
PREDICTION_STEPS = 1
% distance from the center of the unicycle to the point being tracked
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
% minore l'errore
b = 0.2
% proportional gain
K = eye(2)*2.5
K = eye(2)*2
tfin=30
% saturation
saturation = [5; 0.5];
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
% Radius of wheels 10cm. Wheels distanced 15cm from each other
% applying transformation, v
% saturation = [1.57, 20];
SATURATION = [1; 1];
PREDICTION_SATURATION_TOLERANCE = 0.0;
%% launch simulation
% initial state
% In order, [x, y, theta]
x0 = set_initial_conditions(INITIAL_CONDITIONS)
q0 = set_initial_conditions(INITIAL_CONDITIONS)
% trajectory to track
[ref, dref] = set_trajectory(TRAJECTORY)
global tu uu
% simulation time
tspan = 0:0.1:60;
% execute simulation
[t, x] = ode45(@sistema, tspan, x0);
figure(1)
USE_PREDICTION = false;
[t, q, ref_t, U] = simulate_discr(tfin, 0.1);
plot_results(t, q, ref_t, U);
% recalc and save input at each timestep
ts = size(t);
rows = ts(1);
U = zeros(rows, 2);
for row = 1:rows
U(row, :) = control_act(t(row), x(row, :));
figure(2)
USE_PREDICTION = true;
[t1, q1, ref_t1, U1] = simulate_discr(tfin, 0.1);
plot_results(t1, q1, ref_t1, U1);
figure(3)
subplot(1, 2, 1)
plot(tu, uu(1, :))
subplot(1, 2, 2)
plot(tu, uu(2, :))
%plot_results(t, x-x1, ref_t-ref_t1, U-U1);
%% FUNCTION DECLARATIONS
% Discrete-time simulation
function [t, q, ref_t, U] = simulate_discr(tfin, tc)
global ref q0 u_discr
steps = tfin/tc
q = q0';
t = 0;
u_discr = control_act(t, q0);
U = u_discr';
for n = 1:steps
tspan = [(n-1)*tc n*tc];
z0 = q(end, :);
[v, z] = ode45(@sistema, tspan, z0);
q = [q; z];
t = [t; v];
u_discr = control_act(t(end), q(end, :));
U = [U; ones(length(v), 1)*u_discr'];
end
ref_t = double(subs(ref, t'))';
end
% plot results
ref_t = double(subs(ref, t'))';
subplot(3,2,1)
hold on
xlabel('t')
ylabel('x')
plot(t, ref_t(:, 1));
plot(t, x(:, 1));
legend()
hold off
% Continuos-time simulation
function [t, q, ref, U] = simulate_cont(tfin)
global ref q0
subplot(3,2,2)
plot(t, ref_t(:, 1) - x(:, 1));
xlabel('t')
ylabel('x error')
% simulation time
tspan = linspace(0, tfin);
% execute simulation
[t, q] = ode45(@sistema, tspan, q0);
% recalc and save input at each timestep
ts = size(t);
rows = ts(1);
U = zeros(rows, 2);
for row = 1:rows
U(row, :) = control_act(t(row), q(row, :));
end
% plot results
ref = double(subs(ref, t'))';
end
subplot(3,2,3)
hold on
xlabel('t')
ylabel('y')
plot(t, ref_t(:, 2));
plot(t, x(:, 2));
legend()
hold off
subplot(3,2,4)
plot(t, ref_t(:, 2) - x(:, 2));
xlabel('t')
ylabel('y error')
subplot(3,2,5)
plot(t, U(:, 1))
xlabel('t')
ylabel('input v')
subplot(3,2,6)
plot(t, U(:, 2))
xlabel('t')
ylabel('input w')
% Plots
function plot_results(t, x, ref, U)
subplot(2,2,1)
hold on
plot(ref(:, 1), ref(:, 2), "DisplayName", "Ref")
plot(x(:, 1), x(:, 2), "DisplayName", "state")
xlabel('x')
ylabel('y')
legend()
subplot(2,2,3)
plot(t, U(:, 1))
xlabel('t')
ylabel('input v')
subplot(2,2,4)
plot(t, U(:, 2))
xlabel('t')
ylabel('input w')
subplot(4,4,3)
hold on
xlabel('t')
ylabel('x')
plot(t, ref(:, 1), "DisplayName", "X_{ref}");
plot(t, x(:, 1), "DisplayName", "X");
legend()
hold off
subplot(4,4,4)
plot(t, ref(:, 1) - x(:, 1));
xlabel('t')
ylabel('x error')
subplot(4,4,7)
hold on
xlabel('t')
ylabel('y')
plot(t, ref(:, 2), "DisplayName", "Y_{ref}");
plot(t, x(:, 2), "DisplayName", "Y");
legend()
hold off
subplot(4,4,8)
plot(t, ref(:, 2) - x(:, 2));
xlabel('t')
ylabel('y error')
end

7
unicycle.m Normal file
View File

@ -0,0 +1,7 @@
function dx = unicycle(t, x, u)
% u is (v;w)
% x is (x; y; theta)
theta = x(3);
G_x = [cos(theta), 0; sin(theta), 0; 0, 1];
dx = G_x*u;
end