thesis/tesiema.m

162 lines
3.5 KiB
Matlab

clc
clear all
close all
%% global variables
global q0 ref dref b tc K SATURATION tc tfin USE_PREDICTION PREDICTION_HORIZON PREDICTION_SATURATION_TOLERANCE;
%% variables
TRAJECTORY = 6
INITIAL_CONDITIONS = 1
USE_PREDICTION = false
PREDICTION_HORIZON = 5
% distance from the center of the unicycle to the point being tracked
% ATTENZIONE! CI SARA' SEMPRE UN ERRORE COSTANTE DOVUTO A b. Minore b,
% minore l'errore
b = 0.2
% proportional gain
K = eye(2)*2
tc = 0.1
tfin=30
% saturation
% HYP: a diff. drive robot with motors spinning at 100rpm -> 15.7 rad/s.
% Radius of wheels 10cm. Wheels distanced 15cm from each other
% applying transformation, v
% saturation = [1.57, 20];
SATURATION = [1; 1];
PREDICTION_SATURATION_TOLERANCE = 0.0;
%% launch simulation
% initial state
% In order, [x, y, theta]
q0 = set_initial_conditions(INITIAL_CONDITIONS)
% trajectory to track
[ref, dref] = set_trajectory(TRAJECTORY)
global tu uu
figure(1)
PREDICTION_HORIZON = 0;
[t, q, ref_t, U] = simulate_discr(tfin);
plot_results(t, q, ref_t, U);
figure(2)
PREDICTION_HORIZON = 1;
[t1, q1, ref_t1, U1] = simulate_discr(tfin);
plot_results(t1, q1, ref_t1, U1);
figure(3)
PREDICTION_HORIZON = 2;
[t2, q2, ref_t2, U2] = simulate_discr(tfin);
plot_results(t2, q2, ref_t2, U2);
%figure(3)
%subplot(1, 2, 1)
%plot(tu, uu(1, :))
%subplot(1, 2, 2)
%plot(tu, uu(2, :))
%plot_results(t, x-x1, ref_t-ref_t1, U-U1);
%% FUNCTION DECLARATIONS
% Discrete-time simulation
function [t, q, ref_t, U] = simulate_discr(tfin)
global ref q0 u_discr tc
steps = tfin/tc
q = q0';
t = 0;
u_discr = control_act(t, q0);
U = u_discr';
for n = 1:steps
tspan = [(n-1)*tc n*tc];
z0 = q(end, :);
[v, z] = ode45(@sistema, tspan, z0);
q = [q; z];
t = [t; v];
u_discr = control_act(t(end), q(end, :));
U = [U; ones(length(v), 1)*u_discr'];
end
ref_t = double(subs(ref, t'))';
end
% Continuos-time simulation
function [t, q, ref, U] = simulate_cont(tfin)
global ref q0
% simulation time
tspan = linspace(0, tfin);
% execute simulation
[t, q] = ode45(@sistema, tspan, q0);
% recalc and save input at each timestep
ts = size(t);
rows = ts(1);
U = zeros(rows, 2);
for row = 1:rows
U(row, :) = control_act(t(row), q(row, :));
end
% plot results
ref = double(subs(ref, t'))';
end
% Plots
function plot_results(t, x, ref, U)
subplot(2,2,1)
hold on
plot(ref(:, 1), ref(:, 2), "DisplayName", "Ref")
plot(x(:, 1), x(:, 2), "DisplayName", "state")
xlabel('x')
ylabel('y')
legend()
subplot(2,2,3)
plot(t, U(:, 1))
xlabel('t')
ylabel('input v')
subplot(2,2,4)
plot(t, U(:, 2))
xlabel('t')
ylabel('input w')
subplot(4,4,3)
hold on
xlabel('t')
ylabel('x')
plot(t, ref(:, 1), "DisplayName", "X_{ref}");
plot(t, x(:, 1), "DisplayName", "X");
legend()
hold off
subplot(4,4,4)
plot(t, ref(:, 1) - x(:, 1));
xlabel('t')
ylabel('x error')
subplot(4,4,7)
hold on
xlabel('t')
ylabel('y')
plot(t, ref(:, 2), "DisplayName", "Y_{ref}");
plot(t, x(:, 2), "DisplayName", "Y");
legend()
hold off
subplot(4,4,8)
plot(t, ref(:, 2) - x(:, 2));
xlabel('t')
ylabel('y error')
end